Betriebsanleitung

Vaisala K-PATENTS® inline Refraktometer

PR-23

VERÖFFENTLICHT VON
Vaisala Oyj
Vanha Nurmijärventie 21, 01670 Vantaa, Finnland
P.O. Box 26, 00421 Helsinki, Finnland
+358 9 8949 1

Besuchen Sie unsere Webseiten auf www.vaisala.com.

In diesem Handbuch verwendete Symbole und Begriffe:

Dies zeigt eine **Warnung** an. Hier werden Sicherheitsvorkehrungen angegeben, die erforderlich sind, um Verletzungen bei der Arbeit mit dem Refraktometersystem zu vermeiden.

Dies zeigt an, dass etwas wichtig für den Betrieb des Refraktometersystems ist.

Hinweis Hinweise enthalten zusätzliche Informationen und Empfehlungen.

Warnung! Das Prozessmedium kann heiß oder aus anderen Gründen gefährlich sein.

Vorsichtsmaßnahmen beim Entfernen des Sensors aus der Prozessleitung:

- Vergewissern Sie sich gründlich, dass die Prozessleitung nicht unter Druck steht. Öffnen Sie ein Entlüftungsventil in die Atmosphäre.
- Bei einem Prismenreinigungssystem: Schließen Sie das Handventil für das Reinigungsmedium, und sperren Sie das Reinigungsventil.
- Lösen Sie die Klemme vorsichtig. Seien Sie darauf vorbereitet, dass Sie sie eventuell sofort wieder festziehen müssen.
- Positionieren Sie sich so, dass Sie nicht Spritzern oder entweichendem Medium ausgesetzt sind, und halten Sie sich einen Fluchtweg offen.
- Verwenden Sie Abschirmungen und dem Prozessmedium angemessene Schutzkleidung. Es reicht nicht aus, darauf zu vertrauen, dass sich Kontakt mit dem Medium vermeiden lässt.
- Nach dem Entfernen des Sensors sollte aus Sicherheitsgründen eine Blindabdeckung montiert werden.

Es unterliegt der Verantwortung des Nutzers, die Sicherheitshinweise und Betriebsanleitung des Herstellers zu befolgen. Das Unternehmen des Kunden ist für die Entwicklung und Beibehaltung der Arbeitssicherheit sowie die Einführung einer Sicherheitskultur verantwortlich, in der von den einzelnen Personen erwartet wird, die Sicherheitsvorschriften immer einzuhalten. Das Ignorieren der Sicherheitshinweise und Verstöße gegen Sicherheitsvorgaben dürfen nicht toleriert werden. Der Hersteller ist dafür verantwortlich, Produkte herzustellen, die sicher zu verwenden sind, wenn die Vorschriften eingehalten werden.

Garantie

Die Standardgarantiebedingungen finden Sie unter www.vaisala.com/warranty.

Bitte beachten Sie, dass jegliche Garantie erlischt, wenn ein Schaden durch normale Abnutzung, außergewöhnliche Betriebsbedingungen, nachlässige Behandlung oder Installation oder unbefugte Änderungen verursacht wurde. Weitere Informationen zur Garantie für das jeweilige Produkt finden Sie im entsprechenden Liefervertrag oder den Verkaufsbedingungen.

DAS PASSWORT FÜR PR-23 LAUTET 7 8 4 5 1 2

Dieses Produkthandbuch wird für den Anwender eines Produkts von Vaisala K-PATENTS® bereitgestellt. Die Informationen in diesem Handbuch können ohne vorherige Ankündigung geändert werden. Wenn Änderungen an dem Handbuch erfolgen, wird eine überarbeitete Kopie auf http://www.kpatents.com/ veröffentlicht. Bei der vorliegenden Anleitung handelt es sich um die Übersetzung des englischen Originalhandbuchs zu unseren Prozessrefraktometern PR-23. Im Zweifelsfall gilt die aktuellste englische Originalfassung.

Dokument-/Revisionsnummer IM-DE-PR23/Rev. C

Gültig ab: 4. November 2019

Inhaltsverzeichnis

1	1.1	ung PR-23 Refraktometermodelle	. 1
	1.2	Messprinzip	
	1.3	Allgemeine Sicherheitshinweise	
	1.4	Entsorgung	. 4
2	Sensor	des Inline-Refraktometers	. 5
	2.1	Beschreibung des Sensors	. 5
	2.2	Einbau des Sensors	. 6
	2.2.1	Auswahl des Einbauorts für den Sensor	. 6
	2.2.2	Anleitung zum Einbau des PR-23 in Rohrleitungen	. 7
	2.2.3	Checkliste für den Einbau in Rohrleitungen	. 8
	2.2.4	Checkliste für die Montage in einem Tank, einem Behälter oder einem Rohr mit großem Querschnitt	. 8
3	Messu	mformer DTR	. 9
	3.1	Beschreibung des Messumformers	. 9
	3.2	Montage des Messumformers	10
	3.3	Elektrische Anschlüsse	10
	3.3.1	Verbindungskabel	10
	3.3.2	Anschliessen des Sensors	
	3.3.3	Anschliessen des Messumformers	12
	3.3.4	Leistungsklemmen für Wechselstrom	14
	3.3.5	Leistungsklemmen für 24V Gleichstrom	14
	3.3.6	Reset-Knopf	
4	Prisme	nreinigungssysteme	17
4	Prisme 4.1	nreinigungssysteme	
4			17
4	4.1	Prismabelag Prismenreinigung	17 17
4	4.1 4.2	Prismabelag Prismenreinigung	17 17 18
4	4.1 4.2 4.2.1	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten	17 17 18 18
5	4.1 4.2 4.2.1 4.2.2 4.2.3	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme	17 17 18 18 26
	4.1 4.2 4.2.1 4.2.2 4.2.3	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen	17 17 18 18 26 31
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung	17 18 18 26 31 31
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme	17 18 18 26 31 31
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme	17 17 18 18 26 31 31 31 32
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung	17 18 18 26 31 31 31 32 32
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2 5.1.3	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest	17 17 18 18 26 31 31 32 32 32
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2 5.1.3 5.2	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers	17 18 18 26 31 31 32 32 32 33
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen	17 18 18 26 31 31 32 32 32 33 34
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen	17 17 18 18 26 31 31 32 32 32 33 34 35
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.3	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen Anzeigen des Sensorstatus	17 17 18 18 26 31 31 32 32 32 33 34 35 36
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.3 5.4	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen Anzeigen des Sensorstatus	17 17 18 18 26 31 31 32 32 32 33 34 35 36
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.3 5.4 5.4.1	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen Anzeigen des Sensorstatus Optisches Abbild	17 18 18 26 31 31 32 32 32 33 34 35 36
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.3 5.4.1 5.4.2	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen Anzeigen des Sensorstatus Optisches Abbild Optisches Abbild mit IDS	17 18 18 26 31 31 32 32 32 33 34 35 36 36 36 37
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.3 5.4 5.4.1 5.4.2 5.4.3	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen Anzeigen des Sensorstatus Optisches Abbild Optisches Abbild mit IDS Optisches Bild mit VD	17 18 18 26 31 31 32 32 32 33 34 35 36 36 36 37 38
	4.1 4.2 4.2.1 4.2.2 4.2.3 Inbetri 5.1 5.1.2 5.1.3 5.2 5.2.1 5.2.2 5.3 5.4 5.4.1 5.4.2 5.4.3 5.4.3	Prismabelag Prismenreinigung Empfohlener Reinigungsdruck und Reinigungszeiten Prismenreinigungssysteme Prismenreinigungsdüsen ebnahme und Verwendung Inbetriebnahme Überprüfung vor Inbetriebnahme Überprüfung der Kalibrierung Prismenreinigungstest Handhabung des Messumformers Tastaturfunktionen Displayeinstellung Anzeige der Systeminformationen Anzeigen des Sensorstatus Optisches Abbild Optisches Abbild mit IDS Optisches Bild mit VD Diagnose-Werte	17 18 18 26 31 31 32 32 32 33 34 35 36 36 36 37 38 38

6	Konfigu	uration und Kalibrierung	41
	6.1	Konfigurieren der Ausgangssignaldämpfung	41
	6.1.1	Exponentielle Dämpfung	41
	6.1.2	Lineare Dämpfung	41
	6.1.3	Anstiegsratenbegrenzung	42
	6.2	Konfigurieren der Haltefunktion des Ausgangssignals	43
	6.2.1	Externes Halten	44
	6.2.2	Halten während Reinigung	44
	6.2.3	Toleranzzeit	44
	6.2.4	QF-Schwellenwert	44
	6.2.5	Wechselwirkungen beim Halten der Quelle	45
	6.2.6	Halten und Signaldämpfung	45
	6.2.7	Haltefunktionen am DD-23	46
	6.3	Konfigurieren des Refraktometersystems	46
	6.3.1	Konfigurieren der Relais	
	6.3.2	Konfigurieren der Eingangsschalter	
	6.3.3	Konfigurieren der mA-Ausgänge	
	6.4	Kalibrieren der Konzentrationsmessung	
	6.4.1	Die chemische Kurve	
	6.4.2	Auswahl der Einheiten in der Anzeige	
	6.4.3	Feldkalibrierung	
	6.4.4	Eingabe der Parameter für die Feldkalibrierung	
	6.4.5	Direkte BIAS-Einstellung	56
	6.5	Konfigurieren der Prismenreinigung	
	6.5.1	Der Reinigungszyklus	56
	6.5.2	Einstellen der Parameter für die Prismenreinigung	60
7	Regelm	näßige Wartung	63
•	7.1	Überprüfen der Sensorfeuchtigkeit	
	7.2	Überprüfen des Prismas und der Prismadichtung	
8		suche	
•	8.1	Hardware	
	8.1.1	Leeres Display	66
	8.1.2	Diagnose-LEDs	68
	8.1.3	Display nicht lesbar	68
	8.1.4	Meldung KEIN SENSOR (No sensor)	
	8.1.5	Meldung Kein Signal (No signal)	
	8.1.6	Meldung Kurzschluss (Short-circuit)	
	8.1.7	Meldung Hohe Sensorfeuchte (High sensor humidity)	
	8.1.8	Meldung Hohe Sensortemperatur (High sensor temp)	
	8.1.9	· · · · · · · · · · · · · · · · · · ·	71
	8.1.10	Meldung Niedrige Spannung Messumf. (Low transmitter volt)	71
	8.1.11	Relais und Schalter funktionieren nicht	71
	8.1.12	Ausgangssignal-Fehler während NORMALER BETRIEB (Normal operation)	71
	8.2	Messung	
	8.2.1	Meldung STREULICHT-FEHLER (Outside light error)	71
			71
	8.2.2	Meldung REIN OPTISCHES ABBILD (No optical image)	72
	8.2.3	Meldung PRISMA BELEGT (Prism coated)	72
	8.2.4	Meldung STREULICHT AUF PRISMA (Outside light to prism)	72
	8.2.5	Meldung NIEDRIGE ABBILDQUALITÄT (Low image quality)	72
	8.2.6	Meldung KEIN PROBE (No sample)	73
	0 2 7	Maridan a service service service (T	
	8.2.7 8.2.8	Meldung Fehler temperaturmessung (<i>Temp measurement fault</i>) Drift der Konzentration bei Normaler Betrieb (<i>Normal operation</i>)	73 73

	8.3	Reinigung 73
	8.3.1	Meldung externes halten (External hold)
	8.3.2	Meldungen VORBEREITUNG (Preconditioning), REINIGUNG (Wash),
		ERHOLUNG (Recovering)73
	8.3.3	Meldung PRISMENSPÜLWARNUNG (<i>Prism wash warning</i>)
	8.3.4	Meldung Fehler Prismareinigung (<i>Prism wash failure</i>)
	8.3.5	Meldung externer reinigung-stopp (External wash stop)
	8.3.6	Meldung NIEDR. TEMP. REINIGUNG-STOPP (Low temp wash stop)
	8.3.7	Meldung KEINE PROBE/REINIGUNG-STOPP (No sample/wash stop)
	8.4	Tabelle Diagnosemeldungen
9		-Spezifikationen
	9.1	Sensor-Kompatibilität
	9.2	Sensor-Messbereich
	9.3	Hygiene-Prozessrefraktometer PR-23-AC 78
	9.3.1	PR-23-AC Sensor, Modellkodierung
	9.3.2	PR-23-AC Montageteile, Modellkodierung
	9.3.3	PR-23-AC Spezifikationen
	9.3.4	PR-23-AC Teileliste
	9.3.5	PR-23-AC Montagehinweise
	9.3.6	PR-23-AC I-Leitungsanschluss 90
	9.3.7	Montagevorgaben für EHEDG-zertifizierte PR-23-AC Konfigurationen 90
	9.3.8	Übereinstimmung mit 3A Hygienestandard 90
	9.4	Hygiene-Sondenrefraktometer PR-23-AP
	9.4.1	PR-23-AP Sensor, Modellkodierung
	9.4.2	PR-23-AP Montageteile, Modellkodierung
	9.4.3	PR-23-AP Spezifikationen
	9.4.4	PR-23-AP Teileliste
	9.4.5	PR-23-AP Montagehinweise
	9.4.6	PR-23-AP I-Leitungsanschluss 98
	9.4.7	Montagevorgaben für EHEDG-zertifizierte PR-23-AP Konfigurationen 98
	9.4.8	Übereinstimmung mit 3A Hygienestandard
	9.5	Compact Prozess Refraktometer PR-23-GC
	9.5.1	PR-23-GC Sensor, Modellkodierung
	9.5.2	PR-23-GC Spezifikationen
	9.5.3	PR-23-GC Teileliste
	9.5.4	PR-23-GC Montagehinweise
	9.6	Sonden-Prozessrefraktometer PR-23-GP
	9.6.1	PR-23-GP Sensor, Modellkodierung
	9.6.2	PR-23-GP Spezifikationen
	9.6.3	PR-23-GP Wärmeabdeckung
	9.6.4	PR-23-GP Teileliste
	9.7	Process refractometer PR-23-RP
	9.7.1	Sensor, Modellkodierung
	9.7.2	·
	9.7.3 9.7.4	PR-23-RP Teileliste
	9.7.4 9.7.5	PR-23-RP Kopf, Teileliste
		3
	9.7.6 9.7.7	PR-23-RP Montagehinweise
	9.7.7	Teflon-Body Refraktometer PR-23-M/MS
	9.8 9.8.1	PR-23-M Sensor, Modellkodierung
	9.8.2	PR-23-M Spezifikationen
	9.8.3	PR-23-M Teileliste
	5.0.5	I IV 23 IVI ICIICII316 123

	9.8.4	PR-23-MS Sensor, Modellkodierung	124
	9.8.5	PR-23-MS Spezifikationen	125
	9.8.6	PR-23-MS Teileliste	126
	9.8.7	PR-23-M/MS Montagehinweise	127
	9.9	Saunders-Body-Refraktometer PR-23-W	128
	9.9.1	PR-23-W Sensor, Modellkodierung	129
	9.9.2	PR-23-W Spezifikationen	130
	9.9.3	PR-23-W Teileliste	132
	9.9.4	PR-23-W Montagehinweise	133
	9.10	Das PR-23 Prozessrefraktometer in explosionsgefährdeten Bereichen	134
	9.10.1	Das System	134
	9.10.2	Montage	135
	9.11	Eigensichere Refraktometer PR-23IA und -IF	136
	9.11.1	Ausstattung	137
	9.11.2	Eigensichere Montage	139
	9.11.3	Isolator/Schranken	143
10			
10		mformer DTR, Spezifikationen	145
	10.1	Kompatibilität	145
	10.1.1	DTR Programmversionen	145
	10.2	Modellkodierung	147
	10.2.1	Messumformermodellkodierung	147
	10.2.2	Verbindungskabel, Modellkodierung	147
	10.2.3	Messumformer-Spezifikationen	148
	10.2.4	Verbindungskabel, Spezifikationen	148
	10.3	Teileliste für den Messumformer	149
	10.4	Flammensicheres DTR/STR-Gehäuse	151
	10.4.1	Typenbezeichnung	152
	10.4.2	Abmessungen	153
	10.4.3	Refraktometersystem mit flammensicherem Gehäuse	154
	10.4.4	Schaltung	158
	10.4.5	Spezifikationen	162
11	Safe-Dr	rive™	165
	11.1	Systembeschreibung	165
	11.2	Spezifikationen	166
	11.3	Teileliste	167
	11.3.1	PR-23-SD Sensor	167
	11.3.2	Safe-Drive™ -Absperrventil	168
	11.3.3	Teile des Safe-Drive™ Dampfreinigungssystems	169
	11.3.4	Safe-Drive™ Retractor	170
	11.4	Montage	170
	11.4.1	Schweißen des Absperrventils an das Rohr	172
	11.4.2	Verkabelung	176
	11.4.3	Dampfleitungen für SDI2 (z.B. schwache Lauge und Schwarzlauge)	177
	11.4.4	Hochdruckwasserleitung für SDI2 (z.B. Grünlauge)	179
	11.4.5	Wasserverbrauch der Hochdruckwasserreinigung	180
	11.4.6	Nicht ein- und ausfahrbare Waschdüse SDI2-23-WPR / WPN-XS	180
	11.5	Sicheres Einsetzen und Entfernen von Sensoren	181
	11.5.1	Einsetzen eines Sensors	183
	11.5.2	Entfernen eines Sensors	186
	11.6	Einsetzen und Entfernen der Reinigungsdüse	189
	11.6.1	Einsetzen der Reinigungsdüse	189
	11.6.2	Entfernen der Reinigungsdüse	190
	11.7	Thermische Abdeckung für PR-23-SD	191
	11.8	Verschließen des SD-Systems	193
	11.9	Identifizieren Sie Ihre Refraktometergeneration	194
			'

12	Ethern	et-Anschluss, Spezifikation	197
	12.1	Kabel, Anforderungen und Anschluss	197
	12.1.1	Ethernet-Kabel Spezifikation	197
	12.1.2	Anschließen des Ethernet-Kabels	199
	12.2	Anschluss-Einstellungen	199
	12.2.1	IP-Einstellungen für den DTR	199
	12.2.2	IP-Einstellungen für Stand-Alone-Computer	200
	12.3	Testen des Ethernetanschlusses	201
	12.3.1	Fehlersuche beim Anschluss	201
	12.4	Die Geräte-Homepage	203
	12.4.1	Remote Panel	203
	12.4.2	Sensorverifizierungszertifikat	
	12.5	Datenerfassung über Ethernet	
	12.5.1	Kommunikationsprotokoll	
	12.5.2	Anforderung-Antwort-Paar, Spezifikation	
	12.5.3	Fehlermeldung, Spezifikation	208
13	Sensor	verifizierung	209
13	Sensor 13.1	verifizierung	
13			209
13	13.1	Verifizierung des Brechungsindexes n _D	209 210 210
13	13.1 13.1.1	$\begin{tabular}{lll} \mbox{Verifizierung des Brechungsindexes } n_D & & & \\ \mbox{Umgang mit Flüssigkeiten mit Brechungswert} & & & \\ \end{tabular}$	209 210 210
13	13.1 13.1.1 13.2	Verifizierung des Brechungsindexes n _D	209 210 210 212
13	13.1 13.1.1 13.2 13.3 13.4	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat	209 210 210 212 213
	13.1 13.1.1 13.2 13.3 13.4	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen	209 210 210 212 213 217
	13.1 13.1.1 13.2 13.3 13.4 Einhalt	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen ung gesetzlicher Vorschriften und Zertifizierungen	209 210 210 212 213 217 217
	13.1 13.1.1 13.2 13.3 13.4 Einhalt 14.1	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen ung gesetzlicher Vorschriften und Zertifizierungen EG-Konformitätserklärung für die Refraktometerserie PR-23	209 210 210 212 213 217 217 218
	13.1 13.1.1 13.2 13.3 13.4 Einhalt 14.1 14.2 14.3	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen ung gesetzlicher Vorschriften und Zertifizierungen EG-Konformitätserklärung für die Refraktometerserie PR-23 Konformitätserklärung für PR-23AX-Modelle (ATEX)	209 210 210 212 213 217 217 218 219
14	13.1 13.1.1 13.2 13.3 13.4 Einhalt 14.1 14.2 14.3	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen ung gesetzlicher Vorschriften und Zertifizierungen EG-Konformitätserklärung für die Refraktometerserie PR-23 Konformitätserklärung für PR-23AX-Modelle (ATEX) Konformitätserklärung für PR-23IA-Modelle (ATEX)	209 210 212 213 217 217 218 219 221
14 A	13.1 13.1.1 13.2 13.3 13.4 Einhalt 14.1 14.2 14.3 Glossar Index	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen ung gesetzlicher Vorschriften und Zertifizierungen EG-Konformitätserklärung für die Refraktometerserie PR-23 Konformitätserklärung für PR-23AX-Modelle (ATEX) Konformitätserklärung für PR-23IA-Modelle (ATEX)	209 210 210 212 213 217 217 218 219 221
14 A B	13.1 13.1.1 13.2 13.3 13.4 Einhalt 14.1 14.2 14.3 Glossal Index PR-23 S	Verifizierung des Brechungsindexes n _D Umgang mit Flüssigkeiten mit Brechungswert Verifizierungsverfahren Sensorverifizierungszertifikat Korrekturmaßnahmen ung gesetzlicher Vorschriften und Zertifizierungen EG-Konformitätserklärung für die Refraktometerserie PR-23 Konformitätserklärung für PR-23AX-Modelle (ATEX) Konformitätserklärung für PR-23IA-Modelle (ATEX)	209 210 212 213 217 217 218 219 221 223

1 Einleitung 1

1 Einleitung

Das Inline Refraktometer von Vaisala ist ein Instrument zur Messung von Flüssigkeitskonzentrationen in einer Prozessleitung. Die Messung basiert auf der Lichtbrechung in dem Prozessmedium. Hierbei handelt es sich um eine genaue und sichere Methode zur Bestimmung von Flüssigkeitskonzentrationen.

Der Sensor des Inline-Refraktometers (A in der Abbildung 1.1) misst den Brechungsindex n_D und die Temperatur des Prozessmediums. Diese Informationen werden über das Verbindungskabel (B) an den Messumformer (C) gesendet. Der Messumformer DTR berechnet die Konzentration der Prozessflüssigkeit auf der Grundlage des Brechungsindexes und der Temperatur. Dabei werden vordefinierte Prozessbedingungen zugrunde gelegt. Der Ausgang des DTR ist ein 4–20 mA Gleichstromsignal proportional zur Konzentration der Prozesslösung. Die Prozessdaten können auch über ein Ethernet-Kabel auf einen Computer geladen werden.

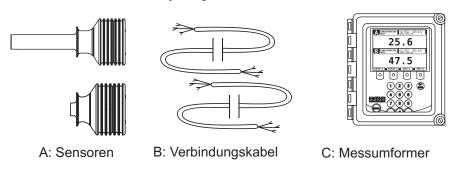


Abbildung 1.1 Refraktometerkomponenten

1.1 PR-23 Refraktometermodelle

Das grundlegende System, bestehend aus einem oder zwei Sensoren, die mit einem Messumformer (DTR) verbunden sind, ist für alle PR-23 Inline-Refraktometermodelle gleich. Allerdings gibt es verschiedene Sensormodelle. Jedes Modell ist für unterschiedliche Prozessanforderungen konzipiert.

Die Modelle PR-23-AC und PR-23-AP erfüllen die Anforderungen der 3-A Hygieneverordnung. Mit einem PR-23-...-AX Sensor mit ATEX-Zulassung oder einem PR-23-...-FM Sensor mit FM-Zulassung oder einem PR-23-...-CS Sensor mit CSA-Zulassung kann ein PR-23 Prozessrefraktometersystem in explosionsgefährdeten Bereichen eingesetzt werden. Das eigensichere Refraktometer PR-23-...-IA mit ATEX-Zulassung kann sogar in explosionsfähigen Bereichen eingesetzt werden. Das Safe-Drive™ System mit einem PR-23-SD Sensor ermöglicht sicheres Einsetzen und Entfernen von Sensoren, auch wenn die Prozessleitung in vollem Betrieb ist.

1.2 Messprinzip

Der Sensor des Inline-Refraktometers bestimmt den Brechungsindex n_D der Prozesslösung. Er misst den kritischen Reflektionswinkel unter Verwendung einer gelben LED-Lichtquelle mit derselben Wellenlänge (580 nm) wie der von Natriumlicht (daher n_D). Das Licht der Lichtquelle (L) in Abbildung 1.2 wird auf die Grenzfläche zwischen dem Prisma (P) und dem Prozessmedium (S) gelenkt. Zwei der Prismaoberflächen (M) fungieren als Spiegel und lenken die Lichtstrahlen so ab, daß Sie auf die Grenzfläche unter unterschiedlichen Winkeln auftreffen.

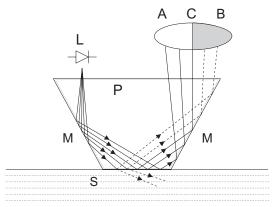
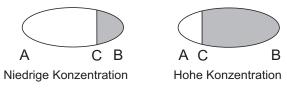



Abbildung 1.2 Refraktometerprinzip

Die reflektierten Lichtstrahlen erzeugen ein Abbild (ACB), wobei (C) die Position des Grenzwinkels ist. Die Strahlen in (A) werden vollständig an der Grenzfläche reflektiert. Die Strahlen an (B) werden teilweise reflektiert und teilweise in die Prozesslösung gebrochen. Auf diese Weise wird das optische Abbild in einen hellen Bereich (A) und einen dunklen Bereich (B) aufgeteilt. Die Position der Grenzlinie (C) gibt den Wert des Grenzwinkels an. Der Brechungsindex $n_{\scriptscriptstyle D}$ kann nun aus dieser Position bestimmt werden.

Der Brechungsindex n_D ändert sich mit der Konzentration der Prozesslösung und der Temperatur. Wenn sich die Konzentration verändert, wird der Brechungsindex normalerweise bei steigender Konzentration ebenfalls größer. Bei höheren Temperaturen ist der Brechungsindex kleiner als bei tieferen Temperaturen. Daraus folgt, daß das optische Abbild sich mit der Konzentration der Prozesslösung, wie in Abbildung 1.3 gezeigt, verändert. Die Farbe der Lösung, Gasblasen oder ungelöste Partikel beeinflussen die Position der Grenzlinie (C) nicht.

Abbildung 1.3 Optische Abbilder

1 Einleitung 3

Die Position der Grenzlinie wird digital mit einem CCD-Element (Abbildung 1.4) ermittelt und dann von einem Prozessor innerhalb des Sensors zu einem Brechungsindex-Wert n_D konvertiert. Dieser Wert wird dann zusammen mit der Prozesstemperatur über ein Verbindungskabel an den Messumformer zur weiteren Verarbeitung, Anzeige und Übertragung weitergeleitet.

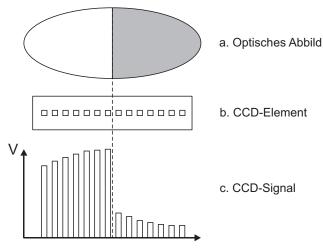


Abbildung 1.4 Bestimmung des optischen Abbilds

1.3 Allgemeine Sicherheitshinweise

Das Prozessmedium kann heiß oder auf andere Art und Weise gefährlich sein. Verwenden Sie dem Prozessmedium entsprechend Schutzbrillen und Schutzkleidung. Treffen Sie Vorbereitungen für den Fall, daß Sie in Kontakt mit dem Prozessmedium kommen.

Vorsichtsmaßnahmen beim Entfernen des Sensors aus der Prozessleitung:

- Vergewissern Sie sich gründlich, daß die Prozessleitung nicht unter Druck steht. Öffnen Sie ein Entlüftungsventil.
- Bei einem Prismenreinigungssystem: Schließen Sie das Handventil für das Reinigungsmedium und schließen Sie das Reinigungsventil.
- Lösen Sie den Flansch bzw. die Klemme vorsichtig. Seien Sie darauf vorbereitet, daß Sie sie eventuell sofort wieder festziehen müssen.
- Berücksichtigen Sie im Vorfeld, daß es zu einer Gefahr durch Spritzen oder Entweichen des Mediums kommen kann und Sie sich dementsprechend verhalten und hinstellen müssen.
- Nach dem Entfernen des Sensors kann die Montage eines Blindstopfens aus Sicherheitsgründen notwendig werden.

1.4 Entsorgung

Muss ein Messgerät oder Teile davon entsorgt werden, beachten Sie bitte die entsprechenden nationalen und internationalen Vorschriften über die Entsorgung elektrischer und elektronischer Geräte. Das Aluminium- bzw. Edelstahlgehäuse des Sensors kann zusammen mit anderen Werkstoffen gleicher Art entsorgt werden.

2 Sensor des Inline-Refraktometers

2.1 Beschreibung des Sensors

Abbildung 2.1 unten zeigt das schematische Schnittbild eines PR-23-Sensors. Das Messprisma (A) ist bündig in die Oberfläche der Sensorspitze eingebaut. Das Prisma (A) und alle anderen optischen Komponenten sind im CORE-Modul (C) montiert. Das CORE-Modul wird mit Tellerfedern (D) gegen die Prismadichtung (B) gepresst. Die Lichtquelle (L) besteht aus einer gelben Leuchtdiode (LED) und der Empfänger ist ein CCD-Element (E). Die Elektronik ist gegen Prozesswärme durch einen thermischen Isolator (K) und Kühlrippen (G) geschützt. Die Prozessorkarte (H) des Sensors erhält die Rohdaten vom CCD-Element (E) und dem Pt-1000 Prozesstemperatur-Fühler (F) und berechnet daraus den Brechungsindex n_{D} und die Prozesstemperatur T. Diese Informationen werden dann an den Messumformer übertragen.

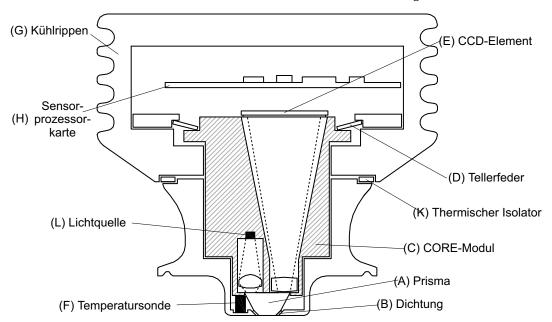


Abbildung 2.1 PR-23 Aufbau des Sensors

2.2 Einbau des Sensors

Der Einbauort des Sensors sollte mit großer Sorgfalt ausgewählt werden, um zuverlässige Messdaten vom Prozess zu erhalten. Einige grundlegenden Vorschriften, die in diesem Abschnitt erläutert werden, gelten für alle Sensormodelle. Die modellspezifischen Instruktionen finden Sie im Kapitel 9, "Sensor-Spezifikationen".

Die Informationen zum hygienischen Kompakt-Refraktometer

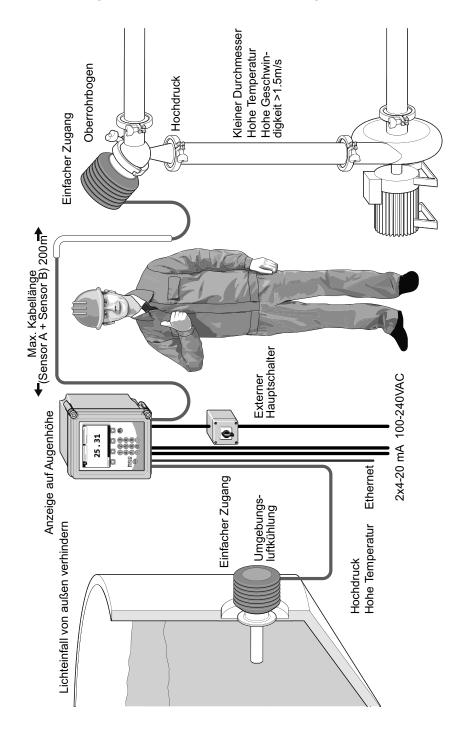
PR-23-AC finden Sie im Abschnitt 9.3, die für das hygienische Sonden-Refraktometer PR-23-AP im Abschnitt 9.4 und diejenigen für das Sonden-Prozess-Refraktometer PR-23-GP im Abschnitt 9.6.

2.2.1 Auswahl des Einbauorts für den Sensor

Der Sensor des Vaisala K-PATENTS[®] Inline-Refraktometers kann unter den meisten klimatischen Bedingungen sowohl in Innenräumen als auch im Freien eingebaut werden. Falls er im Freien betrieben wird, sollten allerdings einige Schutzmaßnahmen ergriffen werden, damit er nicht direktem Sonnenlicht und Regen ausgesetzt ist. Wenn die Rohrleitung lichtdurchlässig ist (z.B. aus Fiberglas), sollte man besonders vorsichtig sein, da das Licht, das von außen durch die Rohrwand auf das Prisma trifft, die Messergebnisse verfälschen kann.

Der Einbauort muß so beschaffen sein, daß sich keine Ablagerungen oder Gasblasen am Sensor ansammeln können. Eine gute Strömungsgeschwindigkeit ist die wichtigste Voraussetzung dafür, daß das Prisma sauber bleibt.

Wichtig: Wenn das Prozessrohr vibriert, befestigen Sie es entsprechend. Ein vibrierendes Rohr kann den darin eingebauten Sensor beschädigen.


Vergewissern Sie sich immer, daß der Sensorkopf kühl genug gehalten wird. Der Sensorkopf sollte nie so heiß werden, daß man die Hand nicht daran halten kann. Die rote Sensorabdeckung sollte nicht hohen Temperaturstrahlungen ausgesetzt werden. In den meisten Fällen gewährleisten die Luftströmung und die natürliche Konvektion eine ausreichende Kühlung, wenn die Luft frei um den Sensorkopf strömen kann.

Zusätzliche Kühlung wird erforderlich, wenn die Umgebungstemperatur höher als 45 °C (113 °F) ist, oder wenn die Prozesstemperatur über 110 °C (230 °F) und die Umgebungstemperatur über 35 °C (95 °F) liegen. Die Luftkühlung wird verbessert, indem man Druckluft gegen die rote Sensorabdeckung bläst. Die Druckluft kann vom Lüftungssystem zur Verfügung gestellt werden. Wenn keine Druckluft verfügbar ist, gibt es die Möglichkeit, eine Wasserkühlung mit einem PR-10038 Kühlhaubenmantel zu installieren (außer bei PR-23-SD, wo der Sensorkopf für Einführung und Entfernung in Originalgröße bleiben muss).

Wichtig: Montieren Sie den Sensor immer so, daß das Verbindungskabel vom Sensorkopf nach unten zeigt.

2.2.2 Anleitung zum Einbau des PR-23 in Rohrleitungen

2.2.3 Checkliste für den Einbau in Rohrleitungen

Die meisten Vaisala K-PATENTS[®] Inline-Refraktometer-Modelle werden in die Rohrleitung eingebaut. Vaisala empfiehlt eine Mindest-Strömungsgeschwindigkeit von 1,5 m/s (6 ft/s). Der Durchmesser, die Form des Rohrs und die Prozesstemperatur beeinflussen die Messung und müssen alle als Faktoren in die Überlegungen einbezogen werden.

- Wenn der Durchmesser der Prozessrohrs variiert, wählen Sie die Position mit dem kleinsten Durchmesser (und entsprechend der höchsten Geschwindigkeit). Auf diese Weise bleibt das Prisma eher sauber.
- Wenn das Refraktometer in einem Regelkreis verwendet wird, halten Sie die Zeitverzögerung möglichst kurz. Wenn z.B. ein Mischventil angesteuert wird, montieren Sie das Refraktometer nahe des Mischpunkts. Stellen Sie auf jeden Fall sicher, daß am Einbauort eine vollständige Vermischung stattgefunden hat.
- 3. Wenn die Temperatur entlang des Prozessrohrs variiert, wählen Sie die *Position mit der höchsten Prozesstemperatur*. Dadurch wird die Gefahr eines Prismabelags minimiert, weil höhere Temperaturen eine höhere Löslichkeit und eine niedrigere Viskosität bedeuten.
- 4. Oft bringt die *Position mit dem höchsten Prozessdruck* (= hinter der Pumpe + vor dem Ventil) vorteilhafte Strömungsbedingungen und Ablagerungen oder Lufteinschluss werden vermieden.
- 5. Der Sensor sollte für die Wartung leicht zugänglich sein.

2.2.4 Checkliste für die Montage in einem Tank, einem Behälter oder einem Rohr mit großem Querschnitt

Ein Sondensensor vom Typ PR-23-AP oder PR-23-GP kann mit einem Flansch oder einer Klemme in Tanks und Behältern eingebaut werden, die entweder über keinen Abstreifer verfügen oder bei denen der Mixer die Behälterwand nicht berührt. Ein Sondensensor kann auch bündig in einen Kocher eingebaut werden, wo der Abstreifer die Wand berührt.

- 1. Der Sondensensor wird nahe beim Rührwerk montiert, um repräsentative Proben der Prozessflüssigkeit zu gewährleisten und das Prisma sauber zu halten.
- 2. Der Sensor sollte für die Wartung leicht zugänglich sein.

3 Messumformer DTR 9

3 Messumformer DTR

3.1 Beschreibung des Messumformers

Der Messumformer DTR ist ein spezieller Computer für die Verarbeitung von Prozessdaten, die er von einem oder zwei Sensoren erhält. Am Gehäuse des Messumformers (Abbildung 3.1) befindet sich eine Frontplatte mit einem beleuchteten Flüssigkristall-Display (LCD) und einer Tastatur. Die Frontplatte läßt sich für den Zugang zu den Anschlüssen und für die Wartung nach vorne hin öffnen. Beide Verschlußlaschen können zur Sicherung mit Vorhängeschlössen versehen werden, damit unerlaubter Zugang verhindert werden kann.

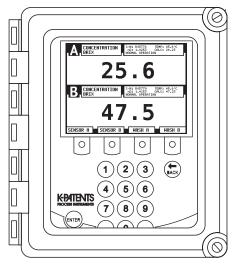
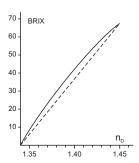
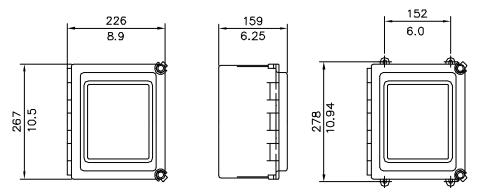


Abbildung 3.1 Das Gehäuse des Messumformers

Die Sensoren übermitteln die Werte des Brechungsindexes n_D und der Prozesstemperatur T an den DTR. Das Mikroprozessorsystem linearisiert anschließend die Konzentrationsmessung (Beispiel in Abbildung 3.2) und führt eine automatische Temperaturkompensation durch.




Abbildung 3.2 Eine linearisierte Kurve

3.2 Montage des Messumformers

Der Messumformer sollte sich vorzugsweise in einem leicht zugänglichen, gut beleuchteten und trockenen Bereich befinden. Das Gehäuse darf Regen oder direktem Sonnenlicht nicht ausgesetzt werden. Vermeiden Sie Vibrationen. Beachten Sie bei der Wahl des Einbauorts die Länge des Verbindungskabels.

Das Gehäuse wird vertikal auf einer senkrechten Oberfläche (Wand) mit vier Montagelaschen montiert (siehe Abbildung 3.3). Das LCD kann am besten betrachtet werden, wenn es sich auf Augenhöhe des Benutzers oder leicht darüber oder darunter befindet.

Wichtig: Bohren Sie keine Montagelöcher in das Gehäuse, da dies die Schutzklasse des Gehäuses beeinflusst und die Elektronik beschädigen kann.

Abbildung 3.3 Messumformer: Abmessungen (mm/in) und Maße der Montagelaschen

Hinweis: Die LCD-Anzeige besitzt einen Betriebstemperaturbereich von 0–50 °C und einen Lagerungstemperaturbereich von -20–60 °C.

Wichtig: Der DTR verfügt nicht über einen eingebauten Netzschalter. Das System ist daher immer eingeschaltet, wenn es an eine Stromquelle angeschlossen ist. Vaisala empfiehlt den Einbau eines externen Netzschalters, um die Spannungsversorgung des DTR zu unterbrechen (siehe Abbildung 3.6).

3.3 Elektrische Anschlüsse

3.3.1 Verbindungskabel

Das Kabel enthält ein Paar verdrillte Signaldrähte (1,2) und eine Kabelabschirmung (3) (siehe Abschnitt 3.3.2 und Abbildung 3.7). Die gelieferte Standardlänge beträgt 10 Meter (33 Feet) Kabel. Die maximale Länge eines Verbindungskabels beträgt 200 m (66 Feet). Die Signaldrähte (1,2) sind austauschbar (nicht polarisiert). Die Kabelabschirmung wird am Messumformer an die Schutzerde angeschlossen.

Ein Anschlußkasten ermöglicht es Ihnen, Ihr eigenes Kabel zu verwenden, vorausgesetzt es entspricht den Anforderungen der Norm IEC 61158-2 Typ A, siehe Abschnitt 10.2.4, "Verbindungskabel, Spezifikationen".

3 Messumformer DTR 11

3.3.2 Anschliessen des Sensors

(1)

Wichtig: Der Sensoranschluss darf nicht angeschlossen oder entkoppelt werden, wenn der Schaltkreis mit Strom versorgt wird. Schalten Sie den Strom am externen Netzschalter des Messumformers DTR AUS, bevor Sie das Sensorkabel vom Sensor trennen. Nachdem das Sensorkabel wieder mit dem Sensor verbunden ist, können Sie den Strom wieder einschalten.

- 1. Entfernen Sie die vier Schrauben des Sensor-Typenschilds (Abbildung 3.4). Die Anschlussleiste befindet sich unter dem Typenschild.
- 2. Schließen Sie die Signaldrähte an die Anschlussklemmen (1) und (2) und die Kabelabschirmung an Anschlussklemme (3) an.
- 3. Ziehen Sie die Kabeldurchführung fest. Schrauben Sie das Typenschild wieder an.

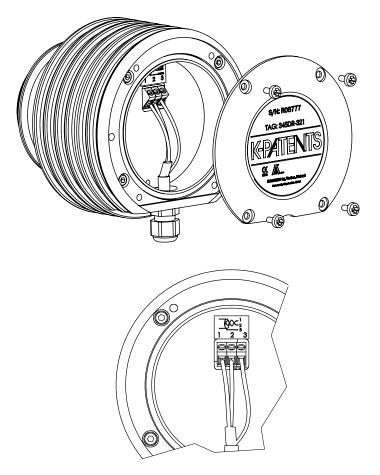


Abbildung 3.4 Sensor, elektrische Anschlüsse.

3.3.3 Anschliessen des Messumformers

Alle elektrischen Anschlussklemmen des Messumformers befinden sich hinter der Frontplatte. Öffnen Sie zuerst die Gehäuseabdeckung. Lösen Sie dann die Schraube der Frontplatte (Abbildung 3.5) und öffnen Sie die Frontplatte. Alle Anschlussklemmen sind nun frei zugänglich.

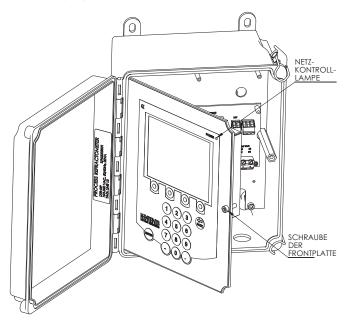
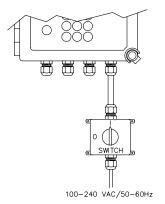
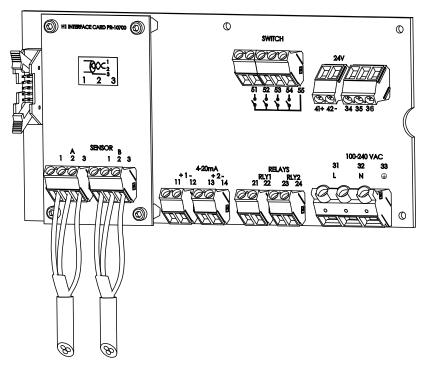



Abbildung 3.5 Öffnen der Frontplatte des Messumformers



Achtung! Überprüfen Sie, daß der Strom abgeschaltet wurde, bevor Sie die Frontplatte öffnen. Wenn die *grüne Netzkontrolleuchte* (Abbildung 3.5) leuchtet, heißt das, daß das System noch unter Spannung steht. Um den Strom vollständig abzuschalten, ziehen Sie den Netzstecker heraus oder schalten Sie ihn mit einem externen Netzschalter ab (Abbildung 3.6).

Abbildung 3.6 Der empfohlene externe Netzschalter, Teile-Nr. PR-10900. Die Kontaktbelastbarkeiten sind 10A/230V

3 Messumformer DTR 13

Abbildung 3.7 Das Motherboard des Messumformers

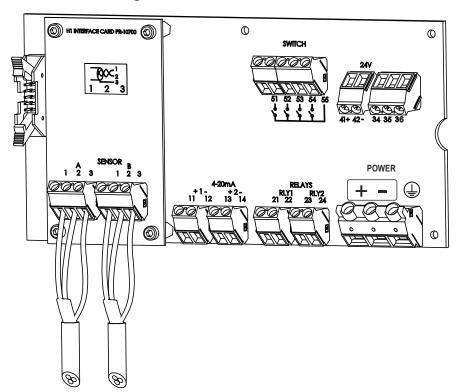


Abbildung 3.8 Motherboard des Messumformers für 24V Gleichstrom

Beschreibung der Anschlussklemmen auf der H1 Interface-Karte PR-10701 und dem Messumformer-Motherboard PR-10600 (Abbildung 3.7).

Auf H1 A 1 2 3	Anschluss für Sensor A, Signaldrähte (1,2), Kabelabschirmung (3).
B 1 2 3	Anschluss für Sensor B, Signaldrähte (1,2), Kabelabschirmung (3).
Auf Motherboard	
11 12	4–20 mA-Ausgang 1, plus (11), minus (12), max. Last 1000 Ohm, galvanisch isoliert.
13 14	4–20 mA-Ausgang 2, plus (13), minus (14), max. Last 1000 Ohm, galvanisch isoliert.
21 22	Relais 1, ein Kontaktausgang, max. 250 V AC, max. 3 A.
23 24	Relais 2, ein Kontaktausgang, max. 250 V AC, max. 3 A.
31 32 33	Netz, L(31), N(32), Schutzerde (33), 100-240 V AC, 50-60 Hz. Es wird ein externer Netzschalter (Abbildung 3.6) empfohlen.
51 52 53 54 55	Schaltereingänge: Schalter 1 (51), Schalter 2 (52), Schalter 3 (53), Schalter 4 (54) und gemeinsame 3 Volt für alle Eingänge (55). Die Schalterklemmen sind galvanisch getrennt.

3.3.4 Leistungsklemmen für Wechselstrom

Die primäre Wechsel-Spannung wird an eine separate Anschlussleiste 31/32/33 angeschlossen, die mit der Bezeichnung POWER (Netz) an der unteren rechten Ecke des Motherboards (Abbildung 3.7) versehen ist. Die drei Anschlussklemmen sind gekennzeichnet mit: 31/L, 32/N und 33/ (Protective Earth = Schutzerde). Der Netzanschluss 33/ wird direkt an die freiliegenden Metallteile des DTR angeschlossen.

3.3.5 Leistungsklemmen für 24V Gleichstrom

Die Gleichstromversorgung ist an eine mit POWER gekennzeichnete Klemmleiste in der unteren rechten Ecke des Motherboards (Abbildung 3.8) angeschlossen. Die drei Klemmen sind mit +, - und (Schutzleiter) gekennzeichnet. Die Leistungsklemme (sit direkt mit den freiliegenden Metallteilen des Messumformers DTR verbunden. Der 24V Gleichstrom an diese Klemmleiste wird von einem Sekundärkreis geliefert, der doppelt oder verstärkt vom Netz isoliert ist innerhalb der Grenzen für einen energiebegrenzten Stromkreis (max 200 VA / U) entsprechend IEC 61010-1.

3.3.6 Reset-Knopf

Durch Drücken des Reset-Knopfes lassen sich der Messumformer DTR, wie auch der oder die Sensoren zurücksetzen und neu starten. Der Knopf ist durch die Kabelöffnung in der Abdeckung der Frontplatte zugänglich (siehe Abbildung 3.9 unten). Zur Betätigung brauchen Sie einen dünnen Stift, am besten aus nicht-leitendem Material. Nach Drücken des Reset-Knopfes schaltet sich das Display für einige Sekunden ab. Nach 30 Sekunden ist das Gerät wieder betriebsbereit.

3 Messumformer DTR 15

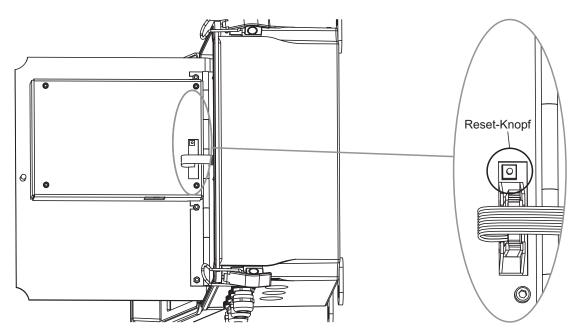


Abbildung 3.9 Position des Reset-Knopfes

4 Prismenreinigungssysteme

4.1 Prismabelag

Die Bildung von Ablagerungen auf der Prismaoberfläche verfälscht die Messung. Achten Sie auf *ungewöhnlich hohe Konzentrationsmesswerte* oder eine *Konzentrationsdrift* (KONZ) nach oben.

Bei den meisten Anwendungsfällen bleibt das Prisma durch den Selbstreinigungseffekt sauber. Wenn es dennoch zu Belägen kommen sollte, überprüfen Sie folgendes:

- Ausreichende Strömungsgeschwindigkeit, siehe Abschnitt 2.2.3, "Checkliste für den Einbau in Rohrleitungen".
- Ein Temperaturunterschied zwischen der Prozessflüssigkeit und der Sensorspitze kann zu Ablagerungen führen. Dies kann bei geringer Durchflußmenge vorkommen, wenn die Wärmeisolierung nicht ausreichend ist. In einigen Fällen kann Abhilfe geschaffen werden, indem man auch den Klemmenanschluss isoliert.

Wenn es Probleme mit Ablagerungen geben sollte, ist die beste Lösung, die Erhöhung der Strömungsgeschwindigkeit, z.B. indem man einen Rohrabschnitt mit kleinerem Durchmesser installiert.

Falls eine höhere Geschwindigkeit oder ein Durchflussverstärker keine Abhilfe schaffen, kann man die Montage einer Reinigungsdüse in Betracht ziehen (Abschnitt 4.2).

4.2 Prismenreinigung

Drei alternative Medien können für die Prismenreinigung verwendet werden: *Dampf, Wasser* und *Hochdruckwasser*. Die eingebauten Relais des Messumformers können so konfiguriert werden, daß Sie den Reinigungszyklus steuern können, siehe Abschnitt 6.3.1, "Konfigurieren der Relais".

Wichtig: In der Lebensmittelindustrie müssen als Reinigungsmedien kulinarischer Dampf oder sauberes Wasser verwendet werden. Absperrventil und Rückschlagventil müssen den 3-A Hygienestandards entsprechen (siehe Abbildungen 4.2 und 4.7)

Kulinarischer Dampf: Bezeichnet Dampf, der unter Verwendung eines Systems erzeugt wird, das den Kriterien gemäß "3-A Accepted Practices for a Method of Producing Steam of a Culinary Quality, Number 609" entspricht.

Sauberes Wasser: Bezeichnet Wasser, das aus einer Versorgungsquelle stammt, die angemessen platziert und geschützt ist, korrekt betrieben wird und eine saubere, hygienisch einwandfreie Qualität hat. Das Wasser muss die Standards erfüllen, die in der National Primary Drinking Water Regulation of the Environmental Protection Agency (EPA) gemäß The Code of Federal Regulations (CFR), Title 40, Parts 141, 142 und 143 vorgeschrieben sind.

4.2.1 Empfohlener Reinigungsdruck und Reinigungszeiten

Der empfohlene Reinigungsdruck und die Zeiten sind in der unteren Tabelle aufgeführt.

Die Reinigungsparameter für die integrierte Reinigungsdüse, PR-23-AP/GP						
Minimum über Maximum über Reinigungs				Erhol-	Intervall	
	Prozessdruck	Prozessdruck	zeit	zeit		
Dampf (SN)	2 bar (30 psi)	4 bar (60 psi)	3 s	20–30 s	20–30 min	
Wasser (WN)	2 bar (30 psi)	4 bar (60 psi)	10 s	20–30 s	10–20 min	
Hochdruckwasser (WP)	15 bar (220 psi)	40 bar (600 psi)	10 s	20–30 s	10–20 min	

Die Reinigungsparameter für die Reinigungsdüse des durchflussadapters AFC							
Minimum über Maximum über Reinigungs- Erhol- In					Intervall		
	Prozessdruck	Prozessdruck	zeit	zeit			
Dampf (SN)	3 bar (45 psi)	6 bar (90 psi)	3–5 s	20–30 s	20–30 min		
Wasser (WN)	3 bar (45 psi)	6 bar (90 psi)	10–15 s	20–30 s	10–20 min		
Hochdruckwasser (WP)	25 bar (350 psi)	35 bar (500 psi)	10–15 s	20–30 s	10–20 min		

Parameter des Reinigungsmediums für Safe-Drive Isolation Ventildüse SDI						
CONC % -Wert Minimum Maximum Reinigungs- Erhol- Interval						
		über	über	zeit	zeit	
		Prozessdruck	Prozessdruck			
Dampf (SN)	10–30 %	2 bar (30 psi)	4 bar (60 psi)	2–3 s	20 s	120–360 min
	30–60 %	3 bar (45 psi)	6 bar (90 psi)	3 s	20 s	20-60 min
	60–90 %	4 bar (60 psi)	8 bar (120 psi)	3–5 s	20 s	15-25 min
Hochdruckwasser (WP)		20 bar	30 bar	10–15 s	20 s	5–20 min
		(290 psi)	(435 psi)			

Wichtig: Bei der Dampfreinigung sollten Sie die empfohlenen Reinigungszeiten nicht überschreiten, weil sich einige Prozessmedien in die Prismaoberfläche einbrennen können, wenn die Prozedur über längere Zeit anhält. Falls es zu Belägen kommt, verkürzen Sie das Reinigungsintervall.

Hinweis: Bei der Wasserreinigung sollte die Wassertemperatur über der Prozesstemperatur liegen.

Hinweis: Der Druckabfall am Rückschlagventil beträgt 0,7 bar (10 psi).

4.2.2 Prismenreinigungssysteme

Das Prismenreinigungssystem für Dampf wird in Abbildungen 4.1 und 4.2 und das für Hochdruckwasser in Abbildungen 4.6 und 4.7 beschreiben.

Achtung! Bei Hochdruckreinigungssystemen kann es zu einem Druckanstieg in einem geschlossenen Rohrabschnitt kommen, wenn die Hochdruckpumpe betätigt wird. Vaisala empfiehlt, ein Überdruckventil in dem Rohrabschnitt zu montieren. Der Entlastungsdruck sollte dem Nenndruck des Rohres entsprechen.

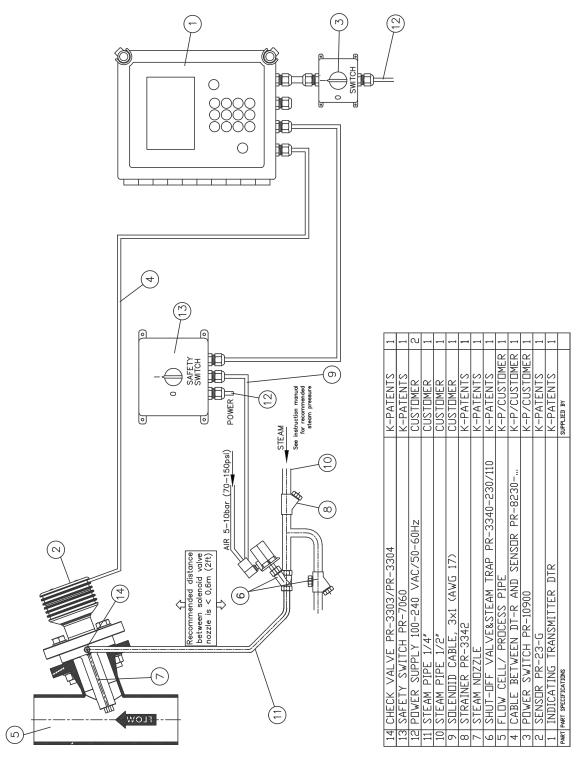


Abbildung 4.1 Ein Prismenreinigungssystem für Dampf (nicht-hygienisch)

20 PR-23 Betriebsanleitung

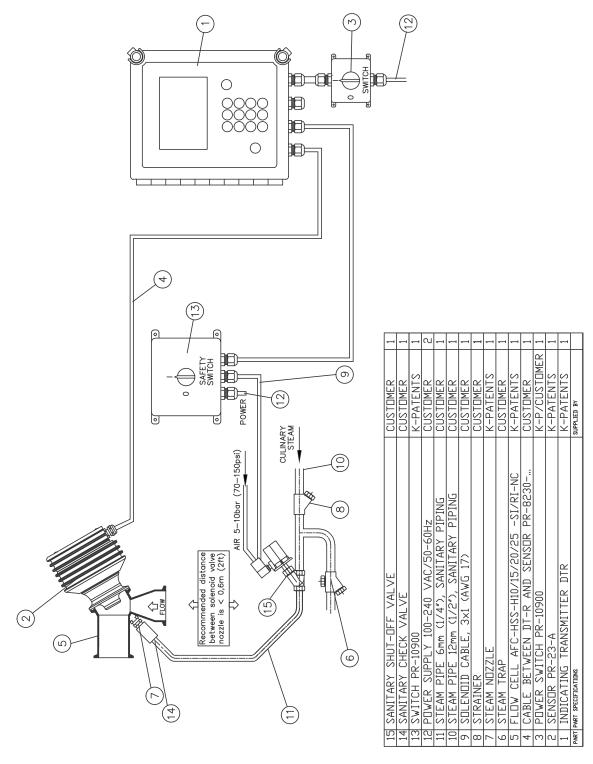
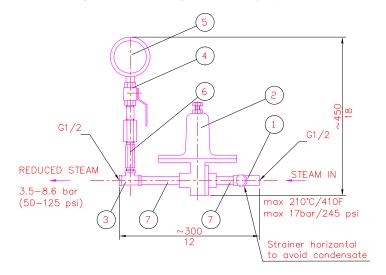



Abbildung 4.2 Ein hygienisches Prismenreinigungssystem für Dampf

Bei übermäßigem Druck in Dampfsystemen: Wenn der Dampfdruck den maximalen Druckunterschied überschreitet, muss ein Druckminderventil PR-3341-J installiert werden, um den Dampfdruck auf eine optimale Auslegung zu reduzieren.

DIMENSIONS: 300x450x140 (12x18x5.5)

7	SEAMLESS PIPE NIPPLE 1/2"	AISI 316	2
6	HEX VALVE SYPHOUS		1
5	PRESSURE METER		1
4	BALL VALVE		1
3	T-COUPLING 1/2"		1
2	PRESSURE REGULATOR		1
1	STRAINER		1

Abbildung 4.3 Druckminderventil PR-3341-J

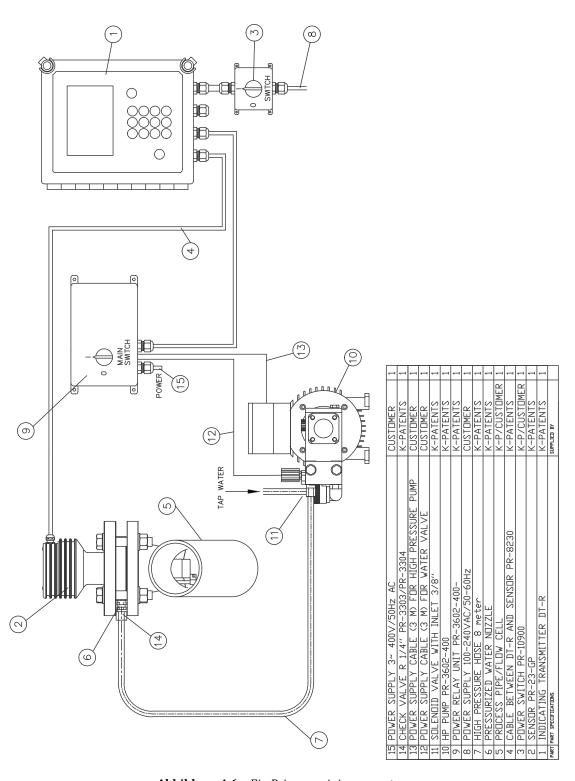

Beachten Sie die Ausrichtung des Filters.

Abbildung 4.4 Sieb horizontal installieren

Abbildung 4.5 Verdrahtung für ein Prismenreinigungssystem mit Dampf

Abbildung 4.6 Ein Prismenreinigungssystem für Hochdruckwasser (nicht-hygienisch)

PR-23 Betriebsanleitung

24

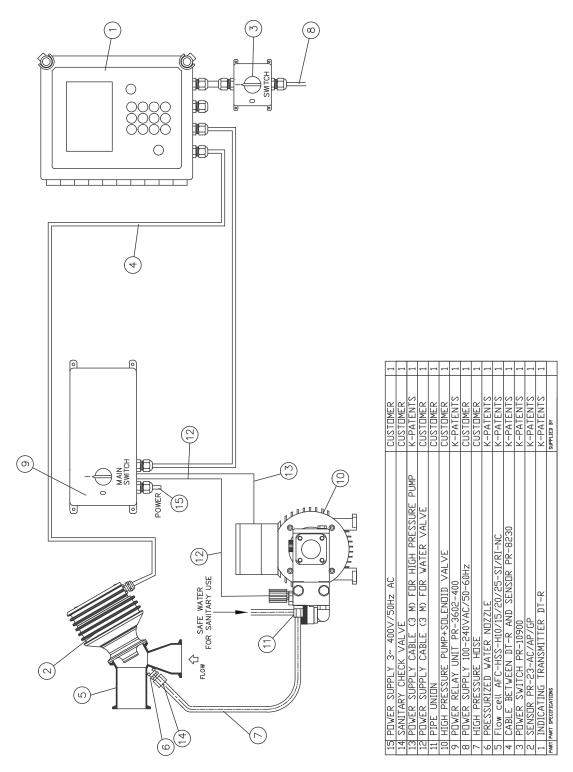
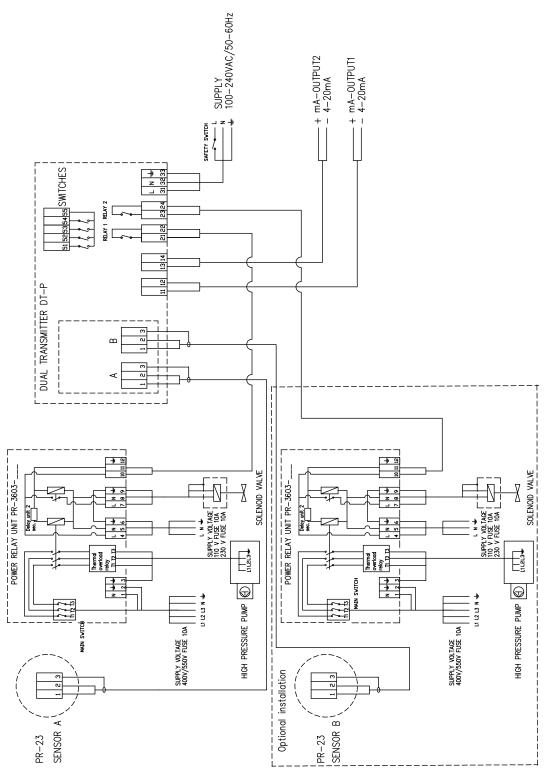



Abbildung 4.7 Ein hygienisches Prismenreinigungssystem für Hochdruckwasser

Abbildung 4.8 Verdrahtung eines Prismenreinigungssystems für Hochdruckwasser

4.2.3 Prismenreinigungsdüsen

Bei der Auswahl der **Reinigungsdüse für ein Kompakt-Refraktometer** müssen Sie sowohl das Reinigungsmedium als auch den Typ des Durchflussadapters berücksichtigen. Durchflussadapter mit größerem Rohrdurchmesser benötigen längere Reinigungsdüsen. In Abbildung 4.9 unter sehen Sie eine Reinigungsdüse für einen Durchflussadapter und die Abmessungen und Teilenummern für jeden Düsentyp.

	Durchflussadapter -H10 oder -H15			
		А	В	Teile-Nr.
	Dampf Wasser Druckwasser	64.75 75 75	4.0 2.5 1.5	PR-3365 PR-3369 PR-3368
	Durchflussadapter -H20 oder -H25			
		А	В	Teile-Nr.
	Dampf Wasser Druckwasser	72.15 97 97	4.0 2.5 1.5	PR-3375 PR-3379 PR-3378
	Durchflussadapter -H30			
		А	В	Teile-Nr.
	Dampf	103	4.0	PR-3393
	Wasser	113	2.5	PR-3394
	Druckwasser	113	1.5	PR-3395
A	Durchflussadapter -H40			
		А	В	Teile-Nr.
	Dampf	133	4.0	PR-3390
	Wasser	143	2.5	PR-3391
	Druckwasser	143	1.5	PR-3392

Abbildung 4.9 Reinigungsdüsen für Durchflussadapter AFC-HSS-XXX-XX-NC

Abbildung 4.10 zeigt wie die Düse in einem Durchflussadapter montiert ist (-NC mit Stutzen für eine Reinigungsdüse). **Hinweis:** Im Abschnitt 9.3.5 finden Sie weitere Informationen zu Durchflussadaptern.

Bei **Sondenrefraktometern** müssen Sie die Reinigungsdüse dem Reinigungsmedium und dem Refraktometer-Modell entsprechend auswählen, siehe Tabelle 4.1 unten.

Abbildung 4.11 zeigt die Montage der Reinigungsdüse beim Hygiene-Sondenrefraktometer PR-23-AP. In Abbildung 4.12 sehen Sie die Montage der Reinigungsdüse beim Prozess-Refraktometer PR-23-GP.

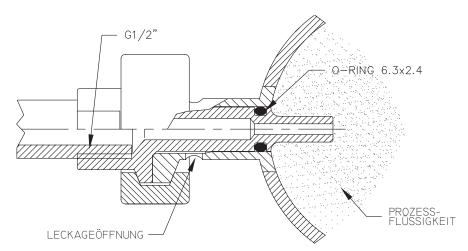
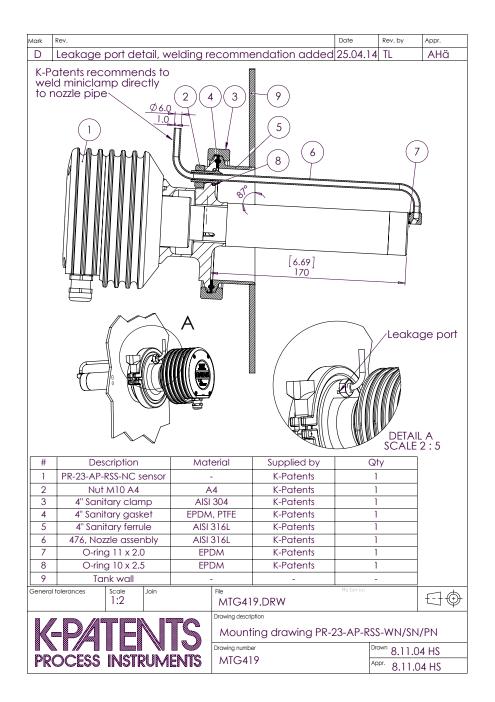



Abbildung 4.10 Prozessanschluss einer Reinigungsdüse

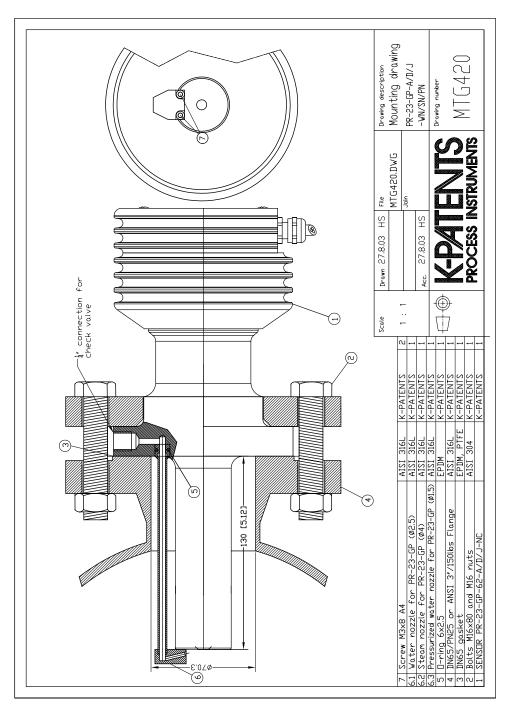
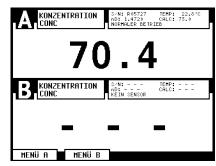

	PR-23-AP	PR-23-GP
Dampfdüse	PR-9321	PR-9324
Wasserdüse	PR-9320	PR-9323
Druckwasserdüse	PR-9322	PR-9325

 Tabelle 4.1
 Auswahl der Reinigungsdüse

28 PR-23 Betriebsanleitung

Abbildung 4.11 Montage der Reinigungsdüse beim Hygiene-Sondenrefraktometer PR-23-AP

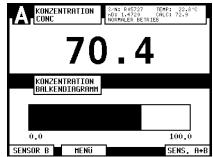

Abbildung 4.12 Montage der Reinigungsdüse beim Prozess-Refraktometer PR-23-GP

5 Inbetriebnahme und Verwendung

5.1 Inbetriebnahme

5.1.1 Überprüfung vor Inbetriebnahme

- 1. Überprüfen Sie die Verdrahtung, Abschnitt 3.3, "Elektrische Anschlüsse".
- 2. Schließen Sie die Netzspannung an. Die **Netzkontrolleuchte** (Abbildung 3.5) sollte innerhalb von wenigen Sekunden aufleuchten.
- 3. Die Hauptzanzeige sollte auf dem Display erscheinen, Abbildung 5.1.


Hauptanzeige für zwei Sensoren

Hauptanzeige für einen Sensor, nur Konzentration

Hauptanzeige für einen Sensor, Konzentration und Temperatur

Hauptanzeige für einen Sensor, Konzentration und Balkendiagramm

Abbildung 5.1 Mögliche Hauptanzeigen auf dem Display

- 4. Falls Sie auf dem Display eine Reihe von Strichen sehen, wurde kein passender Sensor gefunden (zum Beispiel in Abbildung 5.1, oben links, kein Sensor B, nur Sensor A ist angeschlossen). Die Diagnose-Meldung für diesen Sensor lautet KEIN SENSOR (No sensor).
- 5. Überprüfen Sie die Seriennummer des Sensors in der oberen rechten Ecke des Displays.

- 6. Bei einem angeschlossenen Sensor sollte die Diagnose-Meldung bei der Inbetriebnahme NORMALER BETRIEB (*Normal operation*) sein bzw., wenn die Prozessleitung leer ist: KEINE PROBE (*No sample*). Andernfalls sehen Sie bitte im Abschnitt 8.4, "Tabelle Diagnosemeldungen" nach.
- 7. Der TEMP-Wert sollte die derzeitige Prozesstemperatur anzeigen.
- 8. Der Wert und das ordnungsgemäße Setup der zwei mA-Ausgangssignale können überprüft werden, indem man BESCHREIBUNG (*Description*) im Hauptmenü auswählt und anschließend mA-AUSGÄNGE (*mA outputs*) im BESCHREIBUNG-Menü (*Description*) (Abschnitt 5.3).
- 9. Wenn interne Relais- oder Schaltereingänge verwendet werden, können auch diese Einstellungen durch das BESCHREIBUNG-Menü (*Description*) überprüft werden (Abschnitt 5.3).

5.1.2 Überprüfung der Kalibrierung

Warten Sie bis normale Prozessbedingungen herrschen. Der Konzentrations-Anzeigewert ist bei Auslieferung vorkalibriert und im Messumformer befindet sich eine Kopie des Sensor-Kalibrierungs-Zertifikats. Wenn die Diagnose-Meldung NORMALER BETRIEB (Normal operation) erscheint, aber der Konzentrations-Anzeigewert mit den Labormesswerten nicht übereinstimmt, sehen Sie bitte im Abschnitt 6.4, "Kalibrieren der Konzentrationsmessung" nach.

5.1.3 Prismenreinigungstest

- 1. Vergewissern Sie sich, daß die Teile für die Dampf- oder Wasserreinigung angeschlossen sind (Abschnitt 4.2.2, "Prismenreinigungssysteme").
- 2. Rufen Sie das MENÜ (Menu) in der Hauptanzeige auf. Drücken Sie dann 3 (Befehl SENSOR-STATUS) (*Sensor status*). In dieser Sensorstatus-Anzeige drücken Sie die Funktionstaste REINIGUNG (*Wash*). Wenn die Funktionstaste REINIGUNG (*Wash*) nicht erscheint, ist kein internes Relais für diesen Zweck konfiguriert.
- Überprüfen Sie den n_D-Messwert. Damit der Reinigungsvorgang erfolgreich durchgeführt werden kann, muß er unter 1,32 während der Dampfreinigung und auf ungefähr 1,333 während der Wasserreinigung fallen.
- **Wichtig:** Bevor Sie die Prismenreinigung ausprobieren, stellen Sie sicher, daß sich Flüssigkeit im Rohr vor dem Refraktometer-Sensor befindet.

5.2 Handhabung des Messumformers

Der Messumformer DTR erhält die Brechungsindex-Werte n_D und die Prozesstemperatur vom/von den Sensor(en). Ausgehend von diesen Werten berechnet er die Konzentration der Prozessmedien für die Anzeige und zur weiteren Übertragung. Der DTR

kann auch so programmiert werden, daß er einen Alarm bei hoher oder niedriger Konzentration auslöst. Wenn das Refraktometer über ein Prismenreinigungssystem verfügt, kann der DTR den Reinigungsvorgang mit seinem eingebauten Timer steuern.

Weitere Informationen zum Einsatz des Messumformers DTR bei der Konfiguration und Kalibrierung, siehe Kapitel 6, "Konfiguration und Kalibrierung".

5.2.1 Tastaturfunktionen

Zahlentasten: Die 10 Zahlentasten, das Minuszeichen und der Dezimalpunkt dienen zur Eingabe numerischer Parameter. Sie werden auch für die Menüauswahl verwendet.

ENTER-Taste: Die ENTER-Taste dient zur Ausführung des ausgewählten (hinterlegten) Menü-Befehls oder dazu, einen eingegebenen Wert zu bestätigen.

BACK-Taste: Die Befehle sind in einem Entscheidungsbaum angeordnet. Mit der BACK-Taste können Sie einen Schritt zurück zur vorherigen Bildschirmanzeige gehen. Mit ihr können Sie auch eine numerische Eingabe löschen oder zurücknehmen, anstatt sie mit ENTER zu bestätigen.

Funktionstasten: Die Bedeutung der Funktionstaste wird auf dem Bildschirm direkt über der Taste angezeigt. In Abbildung 5.2 sehen Sie ein Beispiel, wie die Funktionstasten funktionieren, von links nach rechts:

- 1. SENSOR B: Springt in das entsprechende Menü für Sensor B.
- 2. Pfeil nach unten: Geht einen Schritt nach unten im Menü.
- 3. Pfeil nach oben: Geht einen Schritt nach oben im Menü.
- 4. AUSWAHL (*Select*): Wählt den hinterlegten Befehl aus (genauso wie das Drücken von ENTER).

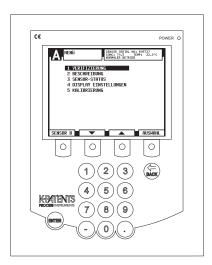


Abbildung 5.2 Die DTR-Tastatur und das Hauptmenü für Sensor A

Hinweis: Drücken Sie die Taste *unter dem Display*. Das Display ist *nicht* berührungsempfindlich.

5.2.2 Displayeinstellung

Mit der Auswahl MENÜ/MENÜ A/MENÜ B oder SENSOR A oder SENSOR B (abhängig von Ihrem Hauptdisplayformat) in der Hauptanzeige rufen Sie die Menüanzeige auf. Wählen Sie 4 DISPLAY EINSTELLUNGEN (*Display setup*), um das Hauptdisplayformat und die Einstellungen des Balkendiagrammes zu ändern und die Hintergrundbeleuchtung oder den Kontrast einzustellen und das Display umzukehren (invertieren). Ab der DTR Programmversion 2.0 lässt sich zwischen verschiedenen Spracheinstellungen wählen.

Abbildung 5.3 Menü Display-Einstellungen

Hauptdisplayformat: Wie Sie in Abbildung 5.1 sehen können, gibt es vier verschiedene Hauptanzeigeformate: Das Dual-Sensor-Format zeigt Informationen von beiden Sensoren an, während die drei verschiedenen Einzel-Sensor-Formate ausgewählte Informationen von immer nur einem Sensor anzeigen. Wählen Sie 1 FORMAT HAUPTDISPLAY (*Main display format*) im DISPLAY EINSTELLUNGEN-Menü (*Display setup*), um die Hauptanzeige zu verändern. Das derzeitige Format wird im Anzeigeformat-Auswahldisplay angezeigt, siehe Abbildung 5.4 unten.

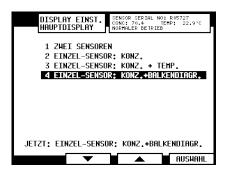


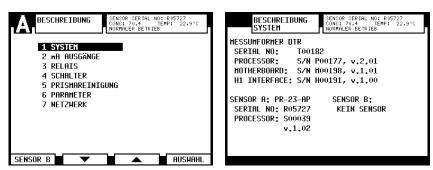
Abbildung 5.4 Auswahl des Hauptdisplayformats

Hinweis: Eine automatische 60 s Timeout-Funktion (mit einer Verifikation von 5 min) springt schrittweise von jeder Anzeige zurück, bis die Hauptanzeige wieder erreicht wird.

Bildschirmdarstellung: Wählen Sie 2 DISPLAY BELEUCHTUNG & KONTRAST (*Display backlight & contrast*) im DISPLAY EINSTELLUNGEN-Menü (*Display setup*) (Abbildung 5.3). Die Werte können Sie mit den Pfeil-Funktionstasten oder alternativ durch eine einstellige Eingabe ändern (so bedeutet zum Beispiel 8 beim Einstellen des Kontrasts 80 %).

Die Funktion 3 DISPLAY UMKEHRUNG (*Display inversion*) bietet zwei Möglichkeiten. Die Standardeinstellung des Bildschirms ist 1 DISPLAY NORMAL (*Positive display*), d.h. gelber Hintergrund und schwarzer Text. Allerdings kann der Bildschirm in einigen Umgebungen klarer zu erkennen sein, wenn 2 DISPLAY UMKEHRT (*Negative display*), d.h. schwarzer Hintergrund und gelber Text gewählt wird.

Einstellungen des Balkendiagrammes: Mit dem Befehl 4 BALKENDIAGRAMM (*Bar graph*) können Sie den Bereich des Balkendiagramms und des Nullpunkts (Zero) getrennt für die Sensoren A und B einstellen. **Hinweis**: Das Balkendiagramm ist nur sichtbar, wenn die Hauptanzeige im Balkendiagramm-Format eingestellt ist (siehe oben).


Display-Sprache: Die Auswahl 5 DISPLAY SPRACHE (*Display language*) ruft die verfügbaren Sprachenversionen für den DTR auf; bzw. die Sprachversionen, die im DTR gespeichert sind. Die voreingestellte Sprache ist Englisch und immer verfügbar. Die Anzahl der Sprachversionen und ihre Sortierung hängt davon ab welche Sprachversionen im DTR abgespeichert sind. Die Auswahl einer Sprachversion wird unmittelbar ausgeführt.

5.3 Anzeige der Systeminformationen

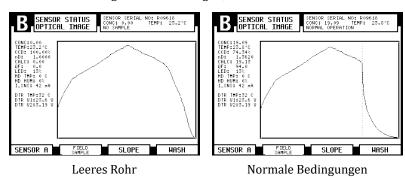
Die Auswahl BESCHREIBUNG (*Description*) aus dem Hauptmenü (Abbildung 5.2) öffnet einen Pfad, zu allen Informationen über das System und zur Kalibrierung. Dieser Pfad ist ungefährlich in dem Sinne, daß keine Werte in diesem Menü geändert werden können. Wenn Sie Werte ändern möchten, müssen Sie KALIBRIERUNG (*Calibration*) aus dem Hauptmenü auswählen.

Das BESCHREIBUNG-Menü (Abbildung 5.5) führt Sie zu den folgenden Informationen:

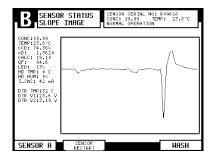
- 1. SYSTEM: Siehe Abbildung 5.5, rechte Seite.
- 2. mA-AUSGÄNGE (mA outputs): Siehe Abschnitt 6.3.3, "Konfigurieren der mA-Ausgänge"
- 3. RELAIS (Relays): Siehe Abschnitt 6.3.1, "Konfigurieren der Relais".
- 4. SCHALTER (Switches): Siehe Abschnitt 6.3.2, "Konfigurieren der Eingangsschalter".
- 5. PRISMAREINIGUNG (*Prism wash*): Siehe Abschnitte 6.3.1 und 6.5, "Konfigurieren der Prismenreinigung".
- 6. PARAMETER: Siehe Abschnitt 6.4, "Kalibrieren der Konzentrationsmessung".
- NETZWERK (Network): Die Ethernet-Adresse und Karten-ID des DTR. Siehe Abschnitt 12, "Ethernet-Anschluss, Spezifikation".

Abbildung 5.5 Systeminformation

5.4 Anzeigen des Sensorstatus


Wählen Sie SENSOR-STATUS (Sensor status) im Hauptmenü.

5.4.1 Optisches Abbild


Es gibt zwei verschiedene Bilderkennungsalgorithmen im PR-23. Der Original-Bilderkennungsalgorithmus wurde durch einen erweiterten IDS (Image Detection Stabilization) Algorithmus ergänzt, der unerwünschte Störungen im Bild kompensiert. Diese Algorithmen unterschieden sich darin, wie das Bild aussieht, aber die Bedeutung der verschiedenen Diagnosewerte ist dieselbe.

Mit dem Original-Bilderkennungsalgorithmus sollte der Graph des optischen Abbilds (Siehe Erklärung in Abbildung 1.4) aussehen wie auf der rechten Seite der Abbildung 5.6. Die vertikale gepunktete Linie gibt die Position der Grenzlinie / des Übergangs an. Für ein leeres Rohr sieht das optische Abbild aus wie auf der linken Seite der Abbildung 5.6. Der Softkey STEIGUNG (*Slope*) führt zu einem Graphen (Abbildung 5.7), der die Steigung (oder die erste Ableitung) des optischen Abbildgraphen in Figure 5.6 zeigt.

Hinweis: Wenn es kein Signal vom Sensor gibt, überkreuzt sich der Bildbereich..

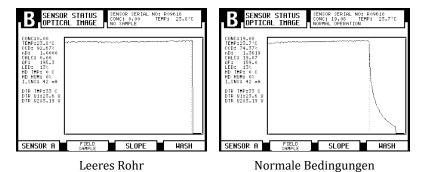

Abbildung 5.6 Typische optische Abbilder ohne IDS

Abbildung 5.7 Ein Steigungsgraph ohne IDS

5.4.2 Optisches Abbild mit IDS

Für den IDS aktivierten Bilderkennungsalgorithmus sehen die Bilder aus wie in Abbildung 5.8 und die Steigung wie in Abbildung 5.9.

Abbildung 5.8 Typische optische Abbilder mit IDS

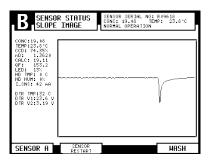


Abbildung 5.9 Ein Steigungsgraph mit IDS

Bitte beachten Sie, dass das "leere" optische Abbild vertikale Links- und/oder Rechtslinie in der Nähe der Ecke des Bildes haben kann. Im Beispiel ist nur die rechte Ecke sichtbar.

5.4.3 Optisches Bild mit VD

Ein PR-23-GP kann mit der Option VD, Vertikale Grenzbildaufnahme, bestellt werden. Dies wird normalerweise bei Verdampfungskristallisatoren für Zucker eingesetzt. Mit vertikalen Grenzlinien hat das optische Bild kein IDS und die Ränder des optischen Bildes sind gerade und leicht geneigt. Dies wird durch eine Programmierung erreicht, das optische Modul im Sensor ist dasselbe wie das für ein PR-23-GP ohne VD-Option.

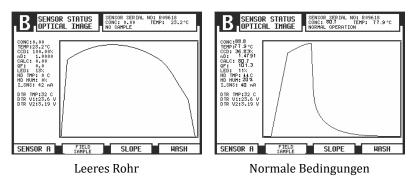


Abbildung 5.10 Typische optische Bilder mit Vertikaler Grenzbildaufnahme

5.4.4 Diagnose-Werte

Die Werte links vom Schaubild werden zu Diagnosezwecken verwendet:

- CONC ist der endgültige Konzentrationswert einschließlich der Feldkalibrierung, siehe Abbildung 6.12.
- TEMP, siehe Abschnitt 5.4.5.
- CCD gibt die Position der Grenzlinie auf dem CCD in % an.
- n_D ist der Brechungsindex-Wert n_Dvom Sensor.
- CALC ist der berechnete Konzentrationswert ohne Feldkalibrierung, Abschnitt 6.4.3
- QF oder Qualitätsfaktor ist ein Wert zwischen 0 und 200. Er ist ein Maß für die Schärfe des Abbilds. Ein Wert um 100 wird als gut betrachtet. Ein Wert unter 40 deutet gewöhnlich auf einen Prismabelag hin.
- LED ist ein Maß für die Lichtmenge von der Lichtquelle in %. Sollte unter 100 % liegen.
- HD TMP = Sensorkopf-Temperatur, siehe Abschnitt 5.4.5.
- HD HUM = Sensorkopf-Feuchtigkeit, siehe Abschnitt 5.4.6.
- I SNS dieser Wert steht für den Strom zum Sensor, den Nennwert ist 40 mA.
- DTR TMP = Messumformer-Temperatur, siehe Abschnitt 5.4.5.
- DTR V1 gibt die Spannung des Netzteils an, der Nennwert ist 24 V.
- DTR V2 gibt die Gleichstrom-Spannungsversorgung an, der Nennwert ist 3,3 V.

Hinweis: Die Anzeige STEIGUNG (*Slope*) verfügt auch über eine Funktionstaste SENSOR NEUSTART (*Sensor restart*). Damit läßt sich der Sensor nach einem Sensor-Software-Update neu starten.

5.4.5 Temperaturmessung

Das System enthält drei verschiedene Temperaturmessungen, die links von den Diagrammen in Abbildung 1.3 angezeigt werden:

TEMP ist die Prozesstemperatur, die zur automatischen Temperaturkompensation im Messumformer dient (Abschnitt 6.4, "Kalibrieren der Konzentrationsmessung").

HD TMP misst die Temperatur auf der Sensor-Prozessorkarte PR-10100 (Abbildung 2.1).

DTR TMP misst die Temperatur auf dem Motherboard des Messumformers (Abbildung 3.7, "Das Motherboard des Messumformers").

Beide Werte, die Sensorkopf-Temperatur und die Temperatur des DTR werden durch das eingebaute Diagnoseprogramm überwacht, siehe Abschnitte 8.1.8, "Meldung ноне sensortemperatur (*High sensor temp*)", und 8.1.9, "Meldung ноне меssumformer темр. (*High transmitter temp*)".

5.4.6 Sensorkopffeuchtigkeit

Die Sensor-Prozessorkarte enthält auch einen Feuchtigkeitssensor. Der Wert HD HUM ist die relative Feuchtigkeit innerhalb des Sensors. Er wird durch das Diagnoseprogramm überwacht, siehe Abschnitt 8.1.7, "Meldung HOHE SENSORFEUCHTE (*High sensor humidity*)".

5.5 Sensorverifizierung

Ein Unternehmen, das nach den ISO 9000 Qualitäts-Standards zertifiziert ist, muss über definierte Verfahren zur Kontrolle und Kalibrierung seiner Messgeräte verfügen. Solche Verfahren sind unabdingbar, um die Konformität des Endproduktes gemäß spezifizierten Anforderungen zu demonstrieren. Die empfohlenen Verifizierungsverfahren finden Sie in Kapitel 13.

6 Konfiguration und Kalibrierung

Alle Änderungen an der Konfiguration und der Kalibrierung werden über das Kalibrierungs-Menü durchgeführt. Sie gelangen dorthing, wenn Sie im Hauptmenü 5 KALIBRIERUNG (*Calibration*) wählen.

Passwort: Sie müssen unter Umständen ein Passwort eingeben, bevor Sie weiter zum Kalibrierungs-Menü gehen können. Das Passwort ist auf der ersten Seite dieses Handbuchs abgedruckt. Die Passwort-Funktion wird über den Befehl 6 PASSWORT (*Password*) im Kalibrierungs-Menü aktiviert oder deaktiviert.

In der Voreinstellung ist das Passwort aktiviert.

6.1 Konfigurieren der Ausgangssignaldämpfung

Der Ausgänge-Bildschirm bietet auch die Möglichkeit, eine Signaldämpfung einzugeben, um den Einfluss von Prozess-Schwankungen zu verringern. Die Dämpfung wird auf den CONC-Wert (und somit auf das Ausgangssignal) des derzeitigen Sensors angewendet (sehen Sie in der oberen Ecke des Displays nach, um festzustellen, welcher Sensor gerade ausgewählt ist, und schalten Sie in den Ausgänge-Bildschirm um, falls nötig). Der PR-23 bietet drei Arten der Signaldämpfung. Die Dämpfungsparameter werden separat über das Ausgänge-Menü eingestellt, das aus dem Kalibrierungs-Menü durch 2 AUSGÄNGE (*Outputs*) ausgewählt wird. Was die Dämpfungszeit in der Praxis bedeutet, ist von der Art der Dämpfung abhängig.

6.1.1 Exponentielle Dämpfung

Die exponentielle (Standard-) Dämpfung ist für die meisten Prozesse geeignet und der Standard für kontinuierliche oder sich langsam ändernde Prozesse Die Werkseinstellung ist immer die exponentielle Dämpfung; rufen Sie den Befehl 3 DÄMPFUNGSART (Damping type) auf, um zwischen verschiedenen Dämpfungsalgorithmen zu wechseln. Bei der exponentiellen Dämpfung (Standarddämpfung), ist die Dämpfungszeit die Zeit, die benötigt wird, damit die Konzentrationsmessung die Hälfte ihres endgültigen Wertes bei einer Schrittänderung erreicht. Wenn sich zum Beispiel die Konzentration von 50 % auf 60 % ändert und die Dämpfungszeit 10 s beträgt, dauert es 10 Sekunden, bis der DTR eine Konzentration von 55 % anzeigt. Eine Dämpfungszeit von 5–15 Sekunden scheint in den meisten Fällen am besten zu funktionieren; die Voreinstellung beträgt 5 Sekunden. Stellen Sie mit Menüpunkt 4 DÄMPFUNGSZEIT (Damping time) die Dämpfungszeit ein.

Abbildung 6.1 zeigt, wie die exponentielle Dämpfungszeit die Messung beeinflusst.

6.1.2 Lineare Dämpfung

Weist der Prozess jedoch schnelle oder sprunghafte Veränderungen auf, erreicht man mit der linearen (schnellen) Dämpfung eine kürzere Einschwingzeit. Bei der linearen Dämpfung (schnellen Dämpfung), ist das Ausgangssignal der Mittelwert des Signals während der Dämpfungszeit. Nach einer Schrittänderung steigt das Signal linear an

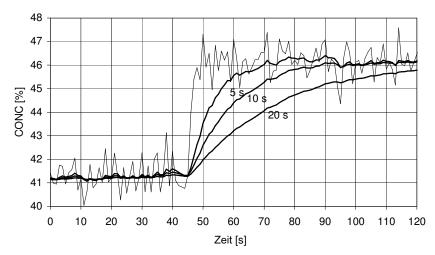


Abbildung 6.1 Exponentielle Dämpfung

und erreicht seinen endgültigen Wert nach Ablauf der Dämpfungszeit. Die lineare Dämpfung bietet den besten Kompromiss zwischen Zufallsrauschunterdrückung und Reaktionszeit bei einer Schrittänderung. Stellen Sie mit Menüpunkt 4 DÄMPFUNGSZEIT (*Damping time*) die Dämpfungszeit ein. Bitte beachten Sie, dass für eine ähnliche Rauschunterdrückung eine längere Dämpfungszeit festgelegt werden muss als für die exponentielle Dämpfung.

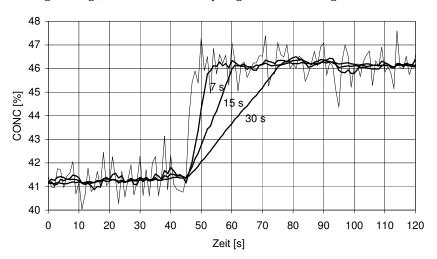


Abbildung 6.2 Lineare Dämpfung

6.1.3 Anstiegsratenbegrenzung

Wenn das Prozess-Signal kurze fehlerhafte hohe oder niedrige Spitzenwerte aufweist, können ihre Effekte durch die Anstiegsratenbegrenzung eingeschränkt werden. Die Anstiegsratendämpfung begrenzt die maximale Änderung des Ausgangssignals in einer Sekunde. Es sollte beachtet werden, dass die Anstiegsratendämpfung für die Zufallsrauschunterdrückung empfohlen wird, da sie nicht-linear ist.

Die Anstiegsratenbegrenzung kann über Menüpunkt 5 ANSTIEGSRATE (*Slew rate*) eingestellt werden. Typische Werte hängen von der Konzentrationseinheit ab, liegen aber gewöhnlich zwischen 0,05 % und 1 %, wenn die Konzentration in Prozent gemessen wird. Abbildung 6.3 zeigt ein Beispiel für unterschiedliche Anstiegsratenbegrenzungen.

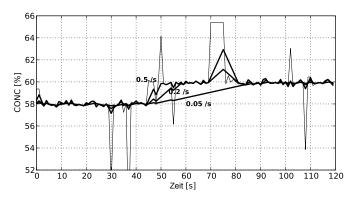


Abbildung 6.3 Anstiegsratendämpfung

Hinweis: Vermeiden Sie eine zu starke Dämpfung, das Signal sollte nicht 'unempfindlich' werden.

6.2 Konfigurieren der Haltefunktion des Ausgangssignals

Das Gerät kann so konfiguriert werden, dass das Messergebnis in drei verschiedenen Fällen vorübergehend gehalten wird.

- 1. Durch Verwendung eines externen Halteschalters (siehe Abschnitt 6.3.2)
- 2. Während der Prismenreinigung (siehe Abschnitt 6.5.2)
- 3. Für eine vorprogrammierte Zeit, wenn es einen intermittierenden Probenverlust am Prisma gibt (aufgrund von Hohlräumen im Prozess)

Wenn das Messergebnis gehalten wird, ändern sich der angezeigte Konzentrationswert und der mA-Ausgang nicht. Die Diagnosewerte (z.B. nD) auf dem Bildschirm spiegeln immer den aktuellen Zustand der Messung wider.

Das Halten der Messung erfolgt, nachdem der CALC-Wert und Feldkorrekturen berechnet wurden, aber bevor die Signalfilterung (Dämpfung) erfolgt (siehe Abschnitt 6.4). Während des Haltens bleibt der Ausgangsfilter in seinem früheren Zustand und das Ausgangssignal ist stationär. Wenn das Halten gestartet wird, wenn kein Ausgangssignal vorhanden ist, (z.B. keine Probe auf dem Prisma), ist während des Haltens kein Messsignal vorhanden.

6.2.1 Externes Halten

Wenn für die externe Haltefunktion ein Schaltereingang konfiguriert wurde (siehe Abschnitt 6.3.2), und der Schaltkontakt geschlossen ist, wird das Messergebnis gehalten. Das Messergebnis wird solange gehalten, bis der Schaltkontakt geöffnet wird. Die Statusmeldung EXTERNES HALTEN (External hold) wird angezeigt.

6.2.2 Halten während Reinigung

Wenn die Einstellung "Halten während Reinigung" (siehe Abschnitt 6.5.2) als AKTIV (*Active*) konfiguriert ist, wird das Ausgangssignal gehalten, wenn das Instrument gereinigt wird. Das Signal wird in allen drei Phasen des Reinigungsprozesses gehalten (Vorbereitung, Reinigung, Erholung).

Diese Einstellung kann verwendet werden, um Einbrüche des Messsignals während der Prismenreinigung zu vermeiden.

6.2.3 Toleranzzeit

Die Toleranzzeiteinstellung kann in Prozessen genutzt werden, in denen intermittierende Unterbrechungen der Messung aufgrund von nicht-repräsentativen Proben auf dem Prisma auftreten. Dies geschieht normalerweise, wenn die Prozessflüssigkeit große Hohlräume enthält.

Wenn das optische Abbild interpretiert werden kann, hat die Toleranzzeiteinstellung keine Wirkung. Wenn das optische Abbild nicht mehr interpretiert werden kann (Statusmeldungen, z.B. KEINE PROBE (*No sample*), KEIN OPTISCHES ABBILD (*No optical image*), PRISMA BELEGT (*Prism coated*)), wird die Messung für die angegebenen Sekunden gehalten.

Zum Beispiel sorgt eine Einstellung von 10 Sekunden dafür, dass jeder Zustand KEINE PROBE (*No sample*), der kürzer als 10 Sekunden ist, keinen Einbruch des Ausgangssignals erzeugt. Die Voreinstellung beträgt 5 Sekunden; öffnen Sie Menüpunkt 6 TOLERANZZEIT (*Tolerance time*), um die Toleranzzeit einzustellen.

Der Toleranzzeitzähler wird immer dann zurückgesetzt, wenn sich eine repräsentative Probe auf dem Prisma befindet (d.h. nD kann bestimmt werden). Abbildung 6.4 veranschaulicht dieses Verhalten bei einem intermittierenden Messsignal. Wenn der Signalabfall kleiner ist als die Toleranzzeit (z.B. in der Abbildung bei $t=10 \, s$ und $t=35 \, s$), fällt das Ausgangssignal nicht ab. Wenn der Signalabfall so lange dauert, dass der Toleranzzeitzähler Null erreicht, erfolgt ein Abfall im Ausgangssignal (in der Abbildung bei $t=80 \, s$).

6.2.4 QF-Schwellenwert

Die Einstellung des QF-Schwellenwerts kann verwendet werden, um das Instrument von der Messung auszuschließen, wenn die Abbildqualität unter einem bestimmten Grenzwert liegt. Wenn der QF-Wert kleiner als der benutzerdefinierte Wert ist, ändert sich der Abbildstatus auf KEIN OPTISCHES ABBILD (*No optical image*), sobald die vom

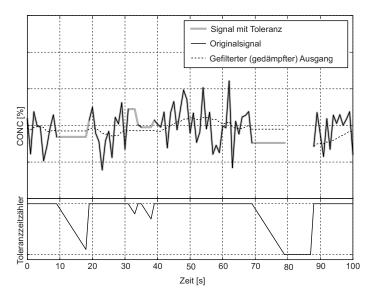


Abbildung 6.4 Effekt der Toleranzzeit auf den Ausgang

Benutzer definierte Toleranzzeit abgelaufen ist (zum Thema Toleranzzeit siehe Abschnitt 6.2.3). Standardmäßig ist der QF-Schwellenwert -500.

6.2.5 Wechselwirkungen beim Halten der Quelle

Es gibt drei verschiedene Ursachen, warum das Messsignal gehalten wird. Alle drei führen zum gleichen Verhalten, sie treten aber auch miteinander in Wechselwirkung.

Reinigungsbezogenes Halten (Abschnitt 6.2.2) und externes Halten (Abschnitt 6.2.1) sind parallel geschaltet. Wenn mindestens eins von ihnen aktiv ist, wird das Messergebnis gehalten. Die Toleranzzeit (Abschnitt 6.2.3) ist von diesen beiden unabhängig, aber sie wird immer dann zurückgesetzt, wann es einen anderen Grund für das Halten der Messung gibt.

Wenn zum Beispiel die Toleranzzeit auf 10 Sekunden eingestellt ist, und das Halten der Reinigung nach 7 Sekunden aktiv wird, wird die verbleibende Toleranzzeit auf 10 Sekunden zurückgesetzt. Wenn die Reinigung vorbei ist, bleiben immer noch 10 Sekunden der Toleranzzeit übrig.

6.2.6 Halten und Signaldämpfung

Die Signalfilterung (Dämpfung) wird während des Haltens gestoppt. Die letzte gefilterte Wert wird auf dem Bildschirm angezeigt und am mA-Ausgang eingestellt (wenn der Konzentrationsausgang konfiguriert ist). Abbildung 6.5 veranschaulicht dieses Verhalten (graue Bereiche stellen die Zeiten dar, in denen das Halten aktiv ist).

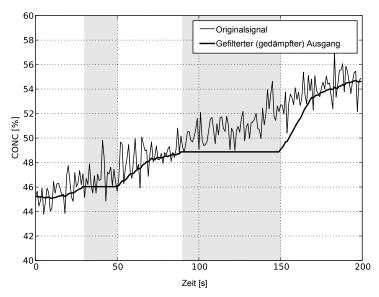


Abbildung 6.5 Dämpfung während des Haltens gestoppt

6.2.7 Haltefunktionen am DD-23

Das Vaisala K-PATENTS[®] Digital Divert Control System DD-23 verwendet den angezeigten Konzentrationswert in seiner Entscheidungslogik. Daher darf die externe Haltefunktion bei einem DD-23 nicht verwendet werden, da sie im Einzelfall das System durch Einfrieren des Messergebnisses unsicher machen könnte.

Bei dem DD-23 muss die Option "Halten während Reinigung" verwendet werden. Andernfalls könnte die Signaldämpfung, wenn sie mit niedrigen nD-Werten kombiniert wird, die vom Reinigungsprozess verursacht werden, am DD-23 nach der Reinigung fehlerhafte Angaben erzeugen.

Die Auswahl der Toleranzzeit mit dem DD-23 erfordert eine sorgfältige Risikoanalyse. Die Verwendung der Toleranzzeitfunktion verlangsamt die Reaktion des Instruments nicht, wenn es im NORMALBETRIEB (*Normal operation*) läuft. Sie verlangsamt jedoch die Störungsmeldung im DD-23, wenn die Prozessleitung leer ist oder wenn das optische Abbild aus einem anderen Grund nicht zu interpretieren ist. Der empfohlene Wert für die Toleranzzeit ist 5 Sekunden, wenn ein DTR in einem DD-23-System verwendet wird.

6.3 Konfigurieren des Refraktometersystems

Der Messumformer verfügt über **zwei** eingebaute **4–20 mA-Ausgänge** (AUSGANG 1, AUSGANG 2), **zwei Relais-Kontakt-Ausgänge** (RELAIS 1, RELAIS 2) und **vier Schaltereingänge** (SCHALTER 1, SCHALTER 2, SCHALTER 3, SCHALTER 4). Jede dieser Quellen kann entweder Sensor A oder Sensor B zugeordnet werden.

6.3.1 Konfigurieren der Relais

Mehr Information zu den elektrischen Eigenschaften der eingebauten Relais finden Sie im Abschnitt 3.3.3. Jedes der beiden Relais kann individuell entweder für Sensor A oder Sensor B konfiguriert werden, d.h. 0–2 Relais können einem Sensor zugeordnet werden. Die Relais lassen sich auch manuell öffnen und schließen, hauptsächlich zu Testzwecken.

Zur Konfiguration der Relais folgen Sie den Anweisungen unten:

- 1. Wählen Sie 5 KALIBRIERUNG (Calibration) aus dem Hauptmenü.
- 2. Wählen Sie 3 RELAIS (Relays) aus dem Kalibrierungs-Menü.
- 3. Wählen Sie das Relais zum Konfigurieren aus, entweder 1 RELAIS 1 (*Relay 1*) oder 2 RELAIS 2 (*Relay 2*).
- 4. Im Relais-Menü (siehe Abbildung 6.6) wählen Sie 1 SENSOR um das angezeigte Relais entweder Sensor A oder Sensor B zuzuordnen.

Hinweis: Die aktuelle Zuordnung der Relais wird am unteren Ende des Relais-Menü-Bildschirms angezeigt, z.B. in Abbildung 6.6 ist Relais 1 dem Sensor A mit der Funktion Unterer Grenzwert zugeordnet.

5. Wählen Sie 2 FUNKTION (*Function*) im Relais-Menü zur Einstellung der Relais-Funktion:

1	NICHT DEFINIERT (Not defined)	Werkseinstellung.
2	NORMALER BETRIEB (Normal operation)	Geschlossener Kontakt, wenn die Diagnose-Meldung NORMALER BETRIEB (Normal operation) während HALTEN (Hold) (siehe Abschnitt 6.3.2) erscheint. Der Kontakt ist auch geschlossen, wenn die Meldung KEINE PROBE (No sample) angezeigt wird.
3	MESSGERÄT OK (Instrument ok)	Geschlossener Kontakt, wenn es keine Funktionsstörung gibt. Siehe auch Abschnitt 8.4 auf Seite 75.
4	UNTERER GRENZWERT (Low limit)	Wird als Alarm-Relais verwendet. Schließt den Kontakt, wenn der Ursprungswert unter dem eingestellten Limit liegt. (Siehe unten: Auswahl der Quelle für den Grenzwert.)
5	OBERER GRENZWERT (High limit)	Wird als Alarm-Relais verwendet. Schließt den Kontakt wenn der Ursprungswert über dem eingestellten Limit liegt. (Siehe unten: Auswahl des Grenzwertursprungs.)
6	VORBEREITUNG (Precondition)	Siehe Abbildung 6.14.
7	REINIGUNG (Wash)	Siehe Abschnitt 6.5.

8 FEHLER PRISMAREINIGUNG Geschlossener Kontakt, wenn die (*Prism wash failure*) Diagnosemeldung FEHLER PRISMAREINIGUNG angezeigt wird (siehe Abschnitt 6.5.2).

Abbildung 6.6 Relais-Menü für Relais 1

6. Wenn Sie entweder Unterer Grenzwert oder Oberer Grenzwert als Relaisfunktion gewählt haben, mässen Sie einen Grenzwertursprung definieren. Wählen Sie dazu 3 QUELLE FÜR GRENZWERT (*Limit source*) im Relais-Menü (Abbildung 6.6).

Auswahl der Quelle für den Grenzwert:

NICHT DEFINIERT (Not defined)
 KONZENTRATION (Concentration)
 PROZESSTEMPERATUR (Process temperature)

Prozesstemperatur

- 7. Der Wert für das Limit wird separat eingestellt, indem man 4 GRENZWERT (*Limit value*) im Relais-Menü (Abbildung 6.6) auswählt und anschließend einen numerischen Grenzwert eingibt.
- 8. Zur Einstellung der **Hysterese** wählen Sie 5 HYSTERESE (*Hysteresis*) im Relais-Menü (Abbildung 6.6). Dieser Wert gibt an, wie schnell sich das Relais öffnet, nachdem der Prozess das obere Limit oder das untere Limit zeitweise überschritten hat. Wenn zum Beispiel das obere Limit 50 und die Hysterese 2 ist, öffnet sich das Relais erst dann wieder, wenn der Prozess auf unter 48 fällt.
- 9. Um die **Relaisverzögerungszeit** zu ändern, gehen Sie auf 6 VERZÖGERUNG (*Delay*) (Abbildung 6.6). Die Verzögerung wird in Sekunden angegeben. Die Werkseinstellung ist 10–15 s.

Zur **manuellen Einstellung**, müssen Sie zurück in das Relais-Auswahl-Menü gehen und dann auf 3 MANUELLE EINSTELLUNG (*Manual set*). Im Bildschirm 'Manuelle Einstellung' können Sie jedes Relais öffnen und schließen, indem Sie die entsprechende Funktionstaste drücken. Der derzeitige Status des Relais (geöffnet oder geschlossen) wird neben dem Relaisnamen angezeigt, siehe Abbildung 6.7 unten:

6.3.2 Konfigurieren der Eingangsschalter

Weitere Informationen zu den elektrischen Eigenschaften der vier Eingangsschalter finden Sie im Abschnitt 3.3. Im BESCHREIBUNG-Menü (*Description*) können Sie feststellen, welche Schalter geschlossen sind (siehe Abschnitt 5.3). Zum Konfigurieren der Schalter, folgen Sie bitte den Anweisungen:

Abbildung 6.7 Anzeige für die manuelle Betätigung der Relais

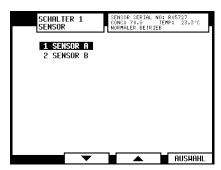

- 1. Wählen Sie MENÜ (*Menu*), um ins Hauptmenü zu gelangen.
- 2. Wählen Sie 5 KALIBRIERUNG (Calibration) aus dem Hauptmenü.
- 3. Wählen Sie 5 SCHALTER (Switches) aus dem Kalibrierungs-Menü.
- 4. Wählen Sie Schalter 1, 2, 3, oder 4 zur Konfiguration. Sie gelangen nun ins Schalter-Menü, siehe Abbildung 6.8 unten.

Abbildung 6.8 Schalter-Menü

5. Zuerst wählen Sie 1 SENSOR, um den ausgewählten Schalter einem Sensor zuzuordnen.

Hinweis: Der Auswahlbalken bewegt sich automatisch zu der derzeitig gültigen Einstellung, d.h. in Abbildung 6.9 unten: Schalter 1 wurde dem Sensor A zugeordnet.

Abbildung 6.9 Display des Sensor-Auswahl-Menüs von Schalter 1 Sensor A ist zur Zeit ausgewählt

6. Wählen Sie 2 FUNKTION (Function) im Schalter-Menü, um die Schalter-Funktion einzustellen.

1 NICHT DEFINIERT (Not defined)

Werkseinstellung.

2 HALTEN (Hold)

Bei der Verwendung mit einem eingebauten Reinigungsrelais ist diese Funktion sehr nützlich für einen intermittierenden Prozess: Das Prisma wird gereinigt, wenn der Prozess angehalten wird (erkannt durch die Schließung eines Kontakts). Die Reinigung wird wiederholt, wenn der Prozess neu startet (wenn der Stopp länger als 60 Sekunden anhält). Das Signal

steht auf (HALTEN (Hold)) zwischen den

Reinigungsvorgängen.

Wenn ein externer unabhängiger Zeitgeber (Timer) eingesetzt wird, bewirkt das Schließen des Kontakts ein

Halten des Ausgangssignals.

REINIGUNG-STOPP

Das Schließen des Schalters unterbindet den (Wash stop) Reinigungszyklus. Man kann damit einen

> Reinigungsvorgang verhindern, wenn das Prozessrohr leer ist. Die Meldung REINIGUNG-STOPP erscheint, wenn

ein Reinigungszyklus ausgelöst wird.

4 EXTERNE REINIGUNG Bei geschlossenem Schalter wartet das System auf einen

(Remote wash) externen Reinigungs-Befehl, bevor ein Reinigungsvorgang ausgelöst wird.

5 AUSWAHL SKALA (Scale select)

Eine beliebige chemische Kurve und die entsprechende Skala zur Feldkalibrierung kann durch Schließen des Schalters ausgewählt werden. Die Skalen sind jedem Schalter unabhängig voneinander zugeordnet.

KALIBRIER-SIEGEL (Calibration seal) Das Schließen des Kontakts verhindert den Zugang zur

Kalibrierung und zur Konfiguration ('externes

Passwort'). Damit läßt sich die Kalibrierung 'versiegeln'.

- 7. Wenn Sie Skalen-Auswahl als Schalter-Funktion gewählt haben, gehen Sie zurück zum Schalter-Menü (wenn Sie nicht automatisch zurückgeführt werden) und wählen Sie 3 KALIBRIER-SKALA (Scale chemical), um die Parameter für die chemische Kurve, die dem Schalter zugeordnet ist, einzugeben. Weiter Informationen zu chemische Kurven und den Parametern von Chemische Kurven finden Sie im Abschnitt 6.4.1.
- 8. Bei Bedarf kann die einem Schalter zugeordnete chemische Kurve durch Eingabe von Parametern zur Feldkalibrierung eingestellt werden. Wählen Sie 4 FELD SKALA (Scale field) im Schalter-Menü, um die Parameter einzugeben. Weitere Informationen zur Feldkalibrierung und der entsprechenden Parameter finden sie im Abschnitt 6.4.3.

6.3.3 Konfigurieren der mA-Ausgänge

Weitere Informationen zu den elektrischen Eigenschaften der beiden Ausgangssignale finden Sie im Abschnitt 3.3.3, "Anschliessen des Messumformers".

- Wählen Sie zuerst 5 KALIBRIERUNG (Calibration) im Hauptmenü und geben Sie dann das Passwort ein, falls nötig. Wählen Sie dann 2 AUSGÄNGE (Outputs) im Kalibrierungs-Menü. Im Ausgänge-Menü wählen Sie 7 mA-AUSGÄNGE (mA outputs).
- Wählen Sie nun den mA-Ausgang 1 oder 2, um zum Ausgangs-Menü (Abbildung 6.10, unten) zu gelangen, wo der Ausgang konfiguriert werden kann.
 Hinweis: Die Zeile am unteren Rand des Ausgangs-Menü-Bildschirms zeigt die derzeitige Konfiguration des ausgewählten mA-Ausgangs an, z.B. in Abbildung 6.10 wurde der mA-Ausgang 1 so konfiguriert, daß er den Konzentrations-Anzeigewert von Sensor B übermittelt.

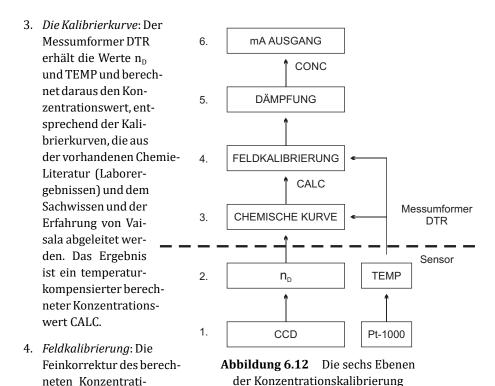
Abbildung 6.10 Das Ausgangs-Menü für mA-Ausgang 1

- Um den Ausgabeursprung für den ausgewählten Ausgang zu ändern, wählen Sie 2
 QUELLE (Source).
 - **Hinweis:** Die Auswahl 1 NICHT DEFINIERT (*Not defined*) 'schaltet' den ausgewählten Ausgang ab.
- Die Auswahl 3 NULL (*Zero*) stellt den Wert ein, der einem 4 mA-Signal entspricht. Der voreingestellte Nullwert ist 0,00. Die Einheitenangabe ist abhängig vom Ursprung und der Display-Einheit, die für den abgefragten Sensor eingestellt war (und kann somit zum Beispiel 0 BRIX oder 0 °F betragen).
- Mit 4 SPANNE (*Span*) stellen Sie den Meßbereich ein, d.h. den Wert, der einem 20 mA-Signal entspricht. Der voreingestellte Bereich ist 100.
- 5 STANDARDAUSGANG (*Default output*) legt einen mA-Standardausgangswert fest, zu dem das Gerät in bestimmten Fehlersituationen zurückkehrt. Der Wert kann auf einen niedrigen oder hohen mA-Wert festgelegt werden, z.B. 3,0 mA oder 22 mA. Die Werkseinstellung der Standardausgabe ist 3,4 mA. Abschnitt 8.4 enthält eine Liste der betroffenen Störungen.

Hinweis: NAMUR ist ein internationaler Verband der Anwender von Automatisierung in der Prozessindustrie. Die Verbandsempfehlung NE 43 fördert eine Vereinheitlichung des Signalpegels für Ausfallinformationen. Das Ziel der NE 43 ist es, eine Basis für die proaktive Verwendung von Senderausfallsignalen in Prozesssteuerungsstrategien zu schaffen. Mit Hilfe dieser Fehlersignale werden Systemfehler von Prozessmessungen getrennt.

NAMUR NE 43 verwendet den Signalbereich 3,8 bis 20,5 mA für Messdaten, wobei \geq 21 mA oder \leq 3,6 mA Diagnoseausfälle anzeigen (siehe Abbildung 6.11). Mit diesen Informationen ist es einfacher, einen Fehlerzustand auf einem Refraktometer zu erkennen, zum Beispiel erfährt man genau, ob es sich um ein leeres Rohr oder ein ausgefallenes Instrument handelt.

Abbildung 6.11 Standardwerte mA-Ausgang


- Mit 6 SEC DEFAULT MODE und 7 SEC DEFAULT können Sie einen sekundären mA-Ausgangswert für leere Leitung einstellen (Meldung KEINE PROBE [No sample]), um ihn von den anderen Meldungen zu unterscheiden, die dazu führen, dass die Messung auf den Standard-mA zurückgesetzt wird. Standardmäßig ist der sekundäre mA-Ausgang deaktiviert.
- 8 MANUALLE EINSTELLUNG (Manual set) ermöglicht ihnen, verschiedene Ausgangswerte einzustellen, um das Ausgangssignal zu überprüfen. Drücken Sie die BACKTaste, um zur normalen Ausgangs-Funktion zurückzukehren.

Hinweis: Wenn Sie den mA-Ausgang abschalten möchten, wählen Sie NICHT DEFINIERT (*Not defined*) im Ursprung-Menü.

6.4 Kalibrieren der Konzentrationsmessung

Die Kalibrierung für die Messung der Konzentration beim Inline-Refraktometer von Vaisala K-PATENTS[®] PR-23 ist in sechs Ebenen angeordnet.

- Die Informationen vom CCD-Element und dem Pt-1000 Temperatur-Element. Die Position der Grenzlinie (Abbildung 1.4, "Bestimmung des optischen Abbilds") wird durch einem Zahlenwert mit dem Namen CCD beschrieben und auf einer Skala von 0-100 % angeordnet.
- 2. Die Sensorkalibrierung: Der aktuelle Brechungsindex n_D wird aus dem CCD-Wert berechnet. Die Prozesstemperatur läßt sich aus dem PT-1000-Widerstand berechnen. Der Sensorausgang ist n_D und Temperatur TEMP ausgegeben in Grad Celsius. Daher sind die Kalibrierungen für alle PR-23-Sensoren identisch und das macht die Sensoren untereinander austauschbar. Darüberhinaus, kann die Kalibrierung jedes Sensors anhand von Standard-Brechungsindex-Flüssigkeiten verifiziert werden, siehe Abschnitt 13.1.

bei einigen Prozessbedingungen notwendig werden oder dazu dienen, die Messung an die Labormesswerte anzugleichen. Die Feldkalibrierung (Abschnitt 6.4.3) bestimmt die entsprechende Korrektur des Wertes CALC. Die korregierte Konzentration wird CONC genannt. Wenn keine Korrektur sattfindet, sind CALC und CONC gleich. Somit wird die chemische Kurve als feste Grundlage für die Berechnung unverändert gehalten. Bei der Korrektur wird lediglich ein zusätzlicher Wert addiert.

5. *Dämpfung*: Siehe Abschnitt 6.1.

neten Konzentrationswertes CALC kann

6. *Ausgangssignal*: Der Bereich des 4–20 mA-Signals ist durch seine beiden Endpunkte auf der CONC-Skala definiert, siehe Abschnitt 6.3.3.

6.4.1 Die chemische Kurve

Die chemische Kurve ist die theoretische Konzentrations-Kurve, basierend auf n_D und TEMP. Sie wird durch eine Satz von 16 Parametern definiert (Tabelle 6.1, ein Satz für jeden Sensor).

$$\begin{array}{ccccc} C_{00} & C_{01} & C_{02} & C_{03} \\ C_{10} & C_{11} & C_{12} & C_{13} \\ C_{20} & C_{21} & C_{22} & C_{23} \\ C_{20} & C_{21} & C_{22} & C_{23} \end{array}$$

Tabelle 6.1 Die Parameter der chemische Kurve

Eine chemische Kurve ist spezifisch für das Prozessmedium, z.B. für Zucker oder Natronlauge. Die Parameter sind von Vaisala vorgegeben und sollten nicht geändert werden, es sei denn, es findet ein Wechsel des Prozessmediums statt. Die Parameter lassen sich ändern, indem man zuerst 5 KALIBRIERUNG (*Calibration*) aus dem Hauptmenü, dann im Kalibrierungs-Menü, 1 CHEMISCHE & FELD PARAMETER (*Chemical & field parameters*), und schließlich 1 PARAMETER CHEMISCHE KURVE (*Chemical curve parameters*) wählt.

6.4.2 Auswahl der Einheiten in der Anzeige

Die Anzeige-Einheiten werden separat für jeden Sensor eingestellt. Gehen Sie zuerst in das Kalibrierungs-Menü des entsprechenden Sensors. Dann wählen Sie 2 AUSGÄNGE (*Outputs*) im Kalibrierungs-Menü und anschließend im Ausgänge-Menü 1 DISPLAY EINHEITEN (*Display units*). Wählen Sie entweder 1 KONZENTRATION (*Concentration*) oder 2 TEMPERATUR (*Temperature*) und dann die Einheit.

Hinweis: Eine Änderung der Einheit für die Konzentration ändert nicht den numerischen Wert der Konzentration. Eine Änderung der Temperatur-Einheit führt zur Neuberechnung des numerischen Temperaturwertes entsprechend der ausgewählten Skala (°C oder °F).

6.4.3 Feldkalibrierung

Vaisala bietet den Service 'Feldkalibrierung' (*Field calibration service*) an, bei dem die Kalibrierung an die kundenseitig ermittelten Laborergebnisse auf Grundlage der bereitgestellten Daten angepaßt wird. Das Verfahren 'Feldkalibrierung' sollte bei normalen Prozessbedingungen und unter Verwendung von Standard-Laborverfahren zur Konzentrationsmessung der Proben durchgeführt werden.

Tragen Sie die Kalibrierdaten im Vordruck 'PR-23 Feldkalibrierung' (am Ende dieses Handbuchs) ein. Diesem Vordruck (in Englisch) ist auch unter http://www.kpatents.com/ und per eMail unter info@kpatents.com erhältlich. Faxen Sie den vollständigen Vordruck 'Feldkalibrierung' entweder an die Vaisala-Zentrale oder an die nächstgelegene Vaisala K-PATENTS[®]-Vertretung. Vaisala führt eine Computeranalyse der Daten durch und Sie können anschließend die optimierten Kalibrier-Parameter in den Messumformer DTR eingeben.

Für einen vollständigen Bericht werden 10–15 gültige Datenpunkte (siehe unten) benötigt. Ein Datenpunkt ist für die Kalibrierung nur dann nützlich, wenn als Diagnose-Meldung NORMALER BETRIEB (*Normal operation*) erscheint. Wenn die Prismenreinigung angewendet wird, sollten Sie keine Proben während des Reinigungsvorgangs nehmen. Jeder Datenpunkt besteht aus:

LAB% Proben-Konzentration, wird bestimmt durch den Anwender Von der Anzeige des Messumformers (siehe Abbildung 5.1)

CALC Berechneter Konzentrationswert

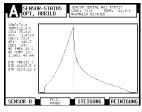
T Prozess-Temperaturmessung in Grad Celsius

nD Brechungsindex n_D

CONC Messwert in Konzentrations-Einheiten

Schreiben Sie zusätzlich zu den Kalibrierdaten die Seriennummer des Messumformers und des Sensors sowie die Position des Sensors auf, d.h. ob er als Sensor A oder als Sensor B installiert ist.

Eine präzise Kalibrierung wird nur erreicht, wenn die Probe ordnungsgemäß genommen wird. Achten Sie dabei besonders auf folgende Einzelheiten:


 Das Probenentnahme-Ventil und das Refraktometer sollten nahe beieinander im Prozess installiert sein.

Achtung! Tragen Sie dem Prozess entsprechende Schutzkleidung, wenn Sie am Probenentnahme-Ventil und mit der Probe arbeiten.

- Lassen Sie zuerst etwas Probenflüssigkeit ablaufen, bevor Sie mit der Bestimmung der Datenpunkte beginnen, um eine Entnahme der alten Prozessflüssigkeit, die noch im Probenentnahme-Ventil übrig geblieben ist, zu verhindern.
- Lesen Sie die Werte CONC, T(emp), nD und CALC im Display des DTR zeitgleich mit der Probenentnahme ab.

Am einfachsten verwendet man hierzu die Funktionstaste FELDPROBE (Field sample) in der Anzeige Sensor-Status. Der Wert jeder Probe ist der Mittelwert von 10 hintereinander durchgeführten Messungen. Dies erhöht die Genauigkeit und reduziert mögliche Störeinflüsse aus dem Prozess.

Drücken Sie die Funktionstaste FELDPROBE (Field sample)...

...warten Sie bis der DTR die Messungen ausführt... (entnehmen Sie die Laborprobe)

...und drücken Sie
WIEDERHOL (*Repeat*)
für einen weiteren
Datensatz oder
BACK-Taste um zur
Anzeige Sensor-Status
zu gelangen.

Abbildung 6.13 Verwendung der Funktionstaste FELDPROBE (*Field sample*)

Benutzen Sie einen dichten Behälter für die Probe, um Verdampfungen zu verhindern.

Wichtig: Eine Offline-Kalibrierung mit Prozessflüssigkeit ergibt sehr selten zuverlässige Ergebnisse, da folgende Probleme auftreten können:

- niedrige Flüßgeschwindigkeit, die dazu führt, daß die Probe keinen repräsentativen Film auf dem Prisma bildet
- Verdampfung der Probe bei hoher Temperatur oder nicht gelöste Feststoffe bei tiefer Temperatur, die zu Abweichung von den Laborergebnissen führen

- eine gealterte Probe, die zu nicht repräsentativen Ergebnissen führt
- Licht von außen, das auf das Prisma fällt

Aus diesen Gründen sollte die Kalibrierung mit Prozessflüssigkeit immer 'inline' erfolgen.

6.4.4 Eingabe der Parameter für die Feldkalibrierung

Die Parameter für die Feldkalibrierung die von Vaisala zur Verfügung gestellt werden, werden eingegeben, indem man zuerst 5 KALIBRIERUNG (*Calibration*) aus dem Hauptmenü wählt und anschließend 1 CHEMISCHE & FELD PARAMETER (*Chemical & field parameters*) und dann 2 PARAMETER FELDKALIBRIERUNG (*Field calibration parameters*).

Wichtig: Wenn es bereits eine vorherige Feldkalibrierung gegeben hat, sollten diese Einstellungen gelöscht werden (indem man alle Werte auf 0 setzt), bevor man die neuen Werte für die Feldkalibrierung eingibt.

6.4.5 Direkte BIAS-Einstellung

Der Wert für die Konzentrationsmessung kann auch direkt korrigiert werden, indem man den Parameter f00 für die Feldkalibrierung ändert.

Der Wert des Bias-Parameters f00 wird zum Konzentrationswert addiert: Neu CONC = Alt CONC + f00.

6.5 Konfigurieren der Prismenreinigung

In einigen Anwendungen kann es sein, dass der Produktstrom das Prisma nicht sauber hält, weil das Medium entweder zu klebrig ist oder die Strömungsgeschwindigkeit zu gering ist. In diesen Fällen lässt sich das Prisma durch die Installation eines Reinigungs-systems automatisch reinigen (siehe Kapitel 4).

Die Einstellungen der Prismenreinigung werden für Sensor A und B individuell vorgenommen. Die Reinigung ist aktiv, wenn ein Relais als Reinigungsrelais konfiguriert wurde (siehe Abschnitt 6.3.1) und die Reinigungszeit nicht Null ist. Die Konfiguration der automatischen Reinigung lässt die Wahl unterschiedlicher Parameter für die beiden Sensoren zu.

6.5.1 Der Reinigungszyklus

Die Reinigungslogik ist in Abbildung 6.15 als Ablaufdiagramm dargestellt. Der automatische Prismenreinigungszyklus (Abbildung 6.14) besteht aus drei Phasen: *Vorbereitung, Reinigung* und *Erholung*. Bei Bedarf kann man mit der Funktion Vorbereitung z.B. Kondensat vor dem Start der Reinigung ausblasen. Nach der Vorbereitung findet eine Pause von einer Sekunde statt um zu vermeiden, dass die beiden Relais für die Vorbereitung und die Reinigung gleichzeitig geschlossen sind.

Der Reinigungszyklus wird gestartet sobald das Intervall abgelaufen ist. Die Reinigung lässt sich auch durch Betätigung eines externen Schalters starten (siehe Fern-Reinigung, Abschnitt 6.3.2). Die Reinigung kann auch manuell in der Anzeige Sensor-Status der Bedienoberfläche gestartet werden (Abschnitt 5.1.3). Die verschiedenen Reinigungsauslöser haben folgende Prioritäten:

- 1. manuelle Reinigung
- 2. Fern-Reinigungsauslösung
- 3. Reinigungsintervall-Zeitgeber

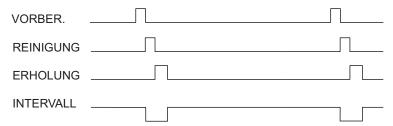


Abbildung 6.14 Der automatische Prisma-Reinigungszyklus

Hinweis: Aus Sicherheitsgründen werden zwei Sensoren niemals gleichzeit gereinigt. Wird die manuelle Reinigung für Sensor A ausgelöst während die Reinigung für Sensor B läuft, startet die Reinigung für A erst, wenn die von B abgeschlossen ist. Entsprechend wird eine nach dem Ablauf des Intervalls anstehende Reinigung für Sensor B erst dann gestartet, wenn die für Sensor A abgeschlossen ist.

Im Falle eines Fern-Starts der Reinigung wird dieser Befehl ignoriert, falls er ausgelöst wird solange der andere Sensor noch gereinigt wird. Der Behl wird nur dann durchgeführt, wenn die Relaiskontakte geschlossen bleiben bis die Reining des anderen Sensors abgeschlossen ist.

Das Reinungsrelais bleibt solange geschlossen, wie als Reinigungszeit in den Reinigungseinstellungen eingestellt ist. Ist die Funktion AUTOM. REININGSABBR. (*Automatic wash cut*) für die Reinigung aktiviert, kann die Reinigung auch schon früher beendet werden. (siehe Abbildung 6.16). Die eingestellte Reinigungszeit wird jedoch nie überschritten.

Nach dem Abschluss der Reinigungsphase, wird die Erholzeit gestartet. Während der Reinigung (Vorbereitung, Reinigung, Erholung) wird das Ausgangssignal gehalten, falls nicht anders eingestellt.

Verhindern des automatischen Reinigungsvorgangs:

Die Vorbereitung und die Reinigungsrelais werden niemals von der automatischen Reinigungskontrolle aktiviert:

- wenn die Diagnose-Meldung KEINE PROBE (*No sample*) (siehe Abschnitt 8.2.6) erscheint, weil dadurch ein sauberes Prisma in einer leeren Prozessleitung angezeigt wird. Die Diagnose-Meldung ist KEINE PROBE/REINIGUNG-STOPP (*No sample/wash stop*).
- wenn ein Reinigungs-Stopp-Eingangsschalter geschlossen ist (siehe Abschnitt 6.3.2),
 wodurch z.B. angezeigt wird, daß kein Prozess-Durchfluss stattfindet. Die Diagnose-Meldung ist hier EXTERNER REINIGUNG-STOPP (External wash stop).
- wenn die Prozesstemperatur unter einen eingestellten Grenzwert gefallen ist, was anzeigt, daß der Prozess nicht läuft. Die Diagnose-Meldung ist NIEDR. TEMP.
 REINIGUNG-STOPP (Low temp wash stop).

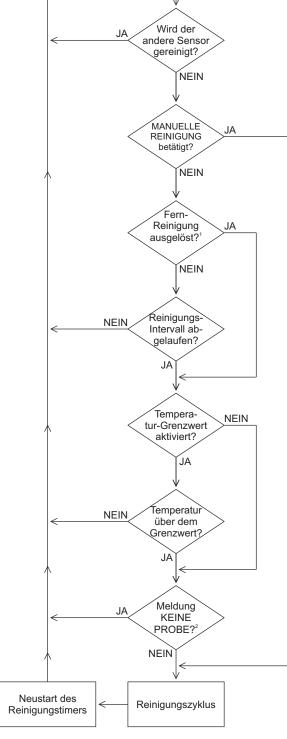


Abbildung 6.15 Reinigungslogik

HINWEISE

- Die Fern-Reinigung wird durch Schliessen des Schalters ausgelöst. Bleibt der Schalter geschlossen, wird nur ein Reinigungszyklus durchgeführt.
- Die Reinigung wird unterdrückt, falls keine Probe vorliegt, kein Sensor angeschlossen ist oder der Sensor nicht korrekt misst.

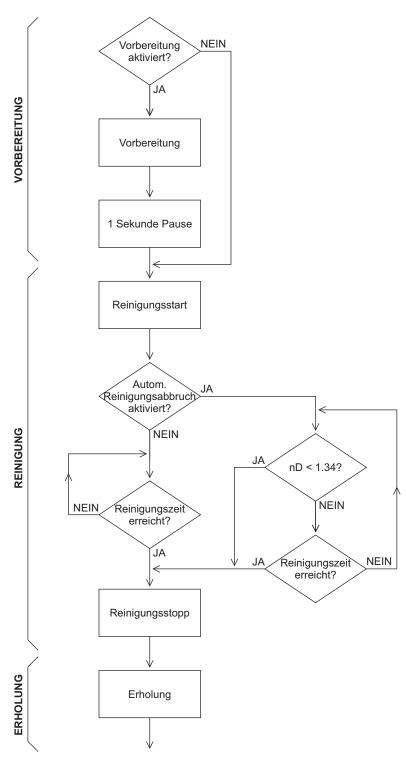


Abbildung 6.16 Reinigungszyklus

6.5.2 Einstellen der Parameter für die Prismenreinigung

Zur Einstellung der Parameter für die Prismenreinigung eines Sensors müssen sie zuerst den Sensor auswählen, dann wählen Sie 5 KALIBRIERUNG (*Calibration*) aus dem Hauptmenü und anschließend 4 PRISMAREINIGUNG (*Prism wash*). Dieses Menü enthält folgende Optionen:

1	VORBEREITUNGSZEIT (Precondition time)	0-30 s (0 s)
2	REINIGUNGSZEIT (Wash time)	0-30 s (3 s)
3	ERHOLUNGSZEIT (Recovery time)	0-30 s (20 s)
4	REINIGUNGSINTERVALL (Wash interval)	0-1440 min (20 min)
5	REINIGUNGS-CHECK MODUS (Wash check mode)	(Deaktiviert)

- 6 HALTEN WÄHR. REINIGUNG (Hold during wash)
- 7 TEMPERATUR-GRENZWERT EINSTELLUNG (Temp limit activation)
- 8 SPERRGRENZWERT (Temp limit value)
- 9 LEERE LEITUNG CHECK (*Empty pipe check*)
- 0 WEITERE ALT. (More...)
- 1 REINIGUNG nD GRENZWERT (Wash nD limit)
- 2 SPÜLTOLERANZZEIT (Wash tolerance time)

(0 min)

Der Prismenreinigingszyklus: Siehe Abbildung 6.16 und Abschitt 6.5.1. Das Timing des Reinigungszyklus wird geregelt von den Einstellungen von REINIGUNGSINTERVALL, VORBEREITUNGSZEIT und ERHOLZEIT. Wird für das REINIGUNGSINTERVALL der Wert Null gewählt, kann die Reinigung nur durch eine manuelle Reinigung oder eine Fern-Reinigung ausgelöst werden.

Falls der Wert für die VORBEREITUNGSZEIT Null ist (oder wenn kein Relais dafür konfiguriert wurde), wird die Vorbereitungsphase übersprungen. Ist der Wert für die REINI-GUNGSZEIT Null (oder es wurde kein Reinigungsrelais konfiguriert), ist die gesamte Reinigungsfunktion deaktiviert.

Die empfohlenen Reinigungszeiten und drücke finden Sie im Abschnitt 4.2.1, "Empfohlener Reinigungsdruck und Reinigungszeiten".

Reinigungscheck: Die Prismenreinigungs-Checkfunktion überwacht automatisch, ob die Reinigung des Prismas erfolgreich verlaufen ist. Im Modus REIN.-CHECK STANDARD (standard Reinigungscheck, *Wash check standard*), wird die Prismenreinigung akzeptiert, wenn der Brechungsindex n_D entweder einen Wert von unter n_D =1,34 bei NORMALER BETRIEB (*Normal operation*) erreicht oder, wenn die Meldung KEINE PROBE (*No sample*)erscheint. Das ist die Anzeige für eine erfolgreiche Reinigung mit Wasser oder Dampf.

Wenn die Reinigung nicht akzeptiert wird, erscheint die Diagnosemeldung PRISMEN-SPÜLWARNUNG (*Prism wash warning*) (siehe Abschnitt 8.4). Wenn innerhalb der Reinigungstoleranzzeit keine Reinigung akzeptiert wird, wird die Meldung zu FEHLER PRISMAREINIGUNG (*Prism wash failure*) angezeigt. Beide Meldungen und der Reinigungstoleranzzähler werden durch eine erfolgreiche Reinigung zurückgesetzt.

Der Modus REINIGUNG-CHECK AUTOM. ABBR. ($Wash\ check\ automatic\ wash\ cut$) unterscheidet sich vom Standardmodus durch Anhalten der Reinigung zwei Sekunden lang, nachdem der n_D unter den Grenzwert fällt.

Um die Messung für die Dauer der Reinigung zu unterbrechen, wählen Sie 6 HALTEN WÄHR. REINIGUNG (*Hold during wash*) und aktivieren Sie die Halte-Funktion in diesem Menü. Der Wert CONC und der Stromausgang werden auf den Wert eingefroren, den sie unmittelbar vor dem Start der Reinigung hatten.

Um den Temperaturgrenzwert zu aktivieren (oder deaktivieren), wählen Sie 7 TEMPERATUR-GRENZWERT EINSTELLUNG (*Temp limit activation*) und wählen Sie den entsprechenden Befehl im Menü aus.

Um einen niedrigen Temperaturgrenzwert einzustellen, wählen Sie 8 SPERRGRENZ-WERT °C (*Temp limit value*) und geben die Temperatur (in °C!) ein, bei der die Grenze liegen soll.

Die Prüfung auf leere Rohre verhindert die Reinigung, wenn die Meldung KEINE PROBE (No sample) ist, d.h. es gibt keine Prozessflüssigkeit im Rohr. Um die Leerrohrprüfung zu deaktivieren (oder aktivieren), wählen Sie 9 LEERE LEITUNG CHECK (Empty pipe check) und dann den geeigneten Menübefehl.

Um den Wash nD Grenzwert zu ändern, select first 0 WEITERE ALT. (*More...*) und dann 1 REINIGUNG nD GRENZWERT (*Wash nD limit*), um den n_D Wert einzustellen, der mit der Reinigungsprüffunktion verwendet werden muss.

Um die Reinigungstoleranzzeit einzustellen, wählen Sie zunächst 0 WEITERE ALT. (*More*) und dann 2 SPÜLTOLERANZZEIT (*Wash tolerance time*) um die Zeit einzustellen, während der eine Reinigung akzeptiert werden muss. Wenn innerhalb der Reinigungstoleranzzeit keine Reinigung akzeptiert wird, wird die Meldung zu FEHLER PRISMAREINIGUNG (*Prism wash failure*) angezeigt. Der Reinigungstoleranzzähler wird durch eine erfolgreiche Reinigung zurückgesetzt.

7 Regelmäßige Wartung

Der Aufwand für eine regelmäßige Wartung ist minimal dank der Konstruktion ohne bewegliche Teile. Es gibt keine mechanischen Einstellungen, keine Trimmpotentiometer und es wird eine Festkörperlichtquelle verwendet. Befolgen Sie bitte dennoch die folgenden Regeln:

- Halten Sie den Sensorkopf und den Messumformer sauber und trocken.
- Stellen Sie sicher, daß die Umgebungstemperatur nicht über +45 °C (113 °F) liegt.
 Der Sensorkopf sollte nie so heiß werden, daß man ihn mit der Hand nicht anfassen kann.
- Wenn ihr Refraktometer über eine Prismenreinigung-Funktion verfügt, vergewissern Sie sich, daß sie ordentlich funktioniert (siehe Abschnitt 5.1.3).

7.1 Überprüfen der Sensorfeuchtigkeit

Der PR-23 Sensorkopf besitzt einen internen Feuchtigkeits-Detektor. Der Feuchtigkeits-Messwert kann auf dem Display des Messumformers überprüft werden. Wählen sie dazu 3 SENSOR-STATUS aus dem Hauptmenü. Überprüfen Sie den Feuchtigkeits-Messwert etwa alle drei Monate.

Ein steigender Feuchtigkeitswert deutet entweder auf Kondensatbildung im Sensorkopf (wenn die Prozesstemperatur unter der Umgebungstemperatur liegt) oder auf ein undichtes Prisma hin. Wenn der Feuchtigkeits-Messwert 30 % übersteigt, ersetzen Sie den Trockner. Wenn der Messwert 50 % übersteigen sollte, überprüfen Sie die Prismadichtungen. Eine relative Feuchtigkeit von mehr als 60 % ruft die Diagnose-Meldung HOHE SENSORFEUCHTE (*High sensor humidity*) auf (siehe Abschnitt 8.1.7). Wenden Sie sich an den Kundendienst, wenn die interne Feuchtigkeit zunimmt.

7.2 Überprüfen des Prismas und der Prismadichtung

Einmal im Jahr müssen Sie sich vergewissern, daß die Prismaoberfläche glatt und sauber ist. Wenn das Prisma zerkratzt oder erodiert ist oder die Dichtung undicht zu sein scheint, wenden Sie sich an den Kundendienst.

Wichtig: In **3-A zertifizierten Sensoren**, dürfen Prismendichtungsersatz und sonstige Reparaturen **nur von autorisieren Vaisala K-PATENTS**[®] **Servicezentren durchgeführt werden**. Wenn Dichtungen der 3-A zertifizierten Sensoren in dem Bereich ersetzt werden, ist die Zertifizierung nicht mehr gültig.

8 Fehlersuche 65

8 Fehlersuche

8.1 Hardware

Für die Fehlersuche bei Hardware-Problemen mit dem Refraktometer empfiehlt es sich, die verschiedenen Karten innerhalb des DTR zu überprüfen. Die Diagnose-LEDs auf den Karten helfen bei der Lösung der Probleme und zeigen an, ob ein Anschluss in Ordnung ist.

Achtung! Gefährliche Spannung – Berührung kann Stromschlag oder Verbrennungen verursachen. Berühren Sie nicht die spannungsführenden Leitungen in der rechten unteren Ecke der H1-Schnittstellenkarte.

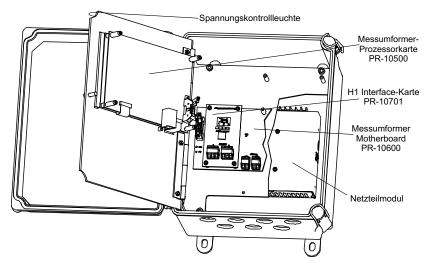
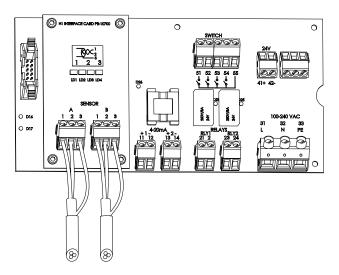
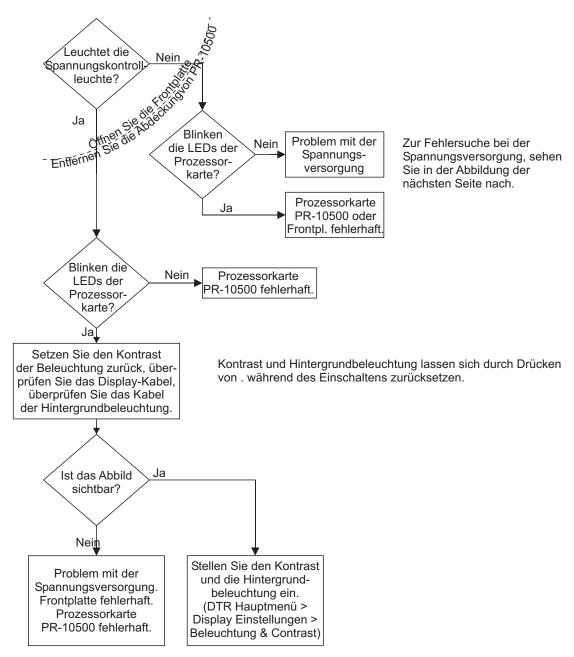




Abbildung 8.1 Lage der Messumformerkarten

Abbildung 8.2 Motherboard PR-10600 und H1 Interface-Karte PR-10701 im Detail

8.1.1 Leeres Display

Abbildung 8.3 Fehlersuche: Leeres Display

8 Fehlersuche 67

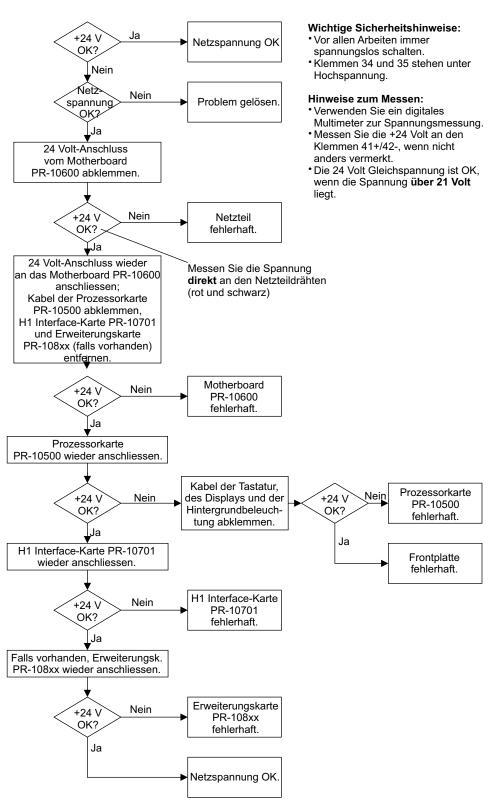


Abbildung 8.4 Überprüfen der Netzversorgung

8.1.2 Diagnose-LEDs

Abbildung 8.1 und Abbildung 8.2 dienen als Hilfe bei der Lokalisierung der Diagnose-LEDs.

LED	Status	Hinweis	Siehe
Frontplatte			
grüne LED	leuchtend	DTR ist eingeschaltet;	8.1.1
		Prozessorkarte PR-10500 ist aktiv.	
Messumformer-Prozesso	orkarte PR-10	0500	
2 gelbe LEDs	blinkend	Prozessorkarte ok.	
Messumformer-Motherb	oard PR-106	00	
gelbe LED (D17)	blinkend	Motherboard-Prozessor arbeitet.	
grüne LED (D16)	leuchtend	Prozessorkarte konvertiert 24V/3V.	
grüne LED (D26)	leuchtend	Trennkonvertierung DC/DC ok.	
2 grüne LEDs (D23, D25)	leuchtend	Entsprechendes Relais (RLY1/RLY2)	
		eingeschaltet.	
H1 Interface-Karte PR-10	0701		
grüne LED (LD1)	leuchtend	Sensor A, Stromzufuhr korrekt, 20–60 mA.	
grüne LED (LD1)	blinkend	Sensor A wird zurückgesetzt.	
rote LED (LD2)	blinkend	Sensor A, Stromzufuhr zu hoch und die Karte versucht, die richtige Stromzufuhr wiederherzustellen.	8.1.6
rote LED (LD2)	leuchtend	Sensor A, Stromzufuhr zu hoch und die Spannungsversorgung für Sensor A wurde abgeschaltet.	8.1.6
grüne LED (LD3)	leuchtend	Sensor B, Stromzufuhr korrekt, 20–60 mA.	
grüne LED (LD3)	blinkend	Sensor B wird zurückgesetzt.	
rote LED (LD4)	blinkend	Sensor B, Stromzufuhr zu hoch und die Karte versucht, die richtige Stromzufuhr wiederherzustellen.	8.1.6
rote LED (LD4)	leuchtend	Sensor B, Stromzufuhr zu hoch und die Spannungsversorgung für Sensor B wurde abgeschaltet.	8.1.6

Tabelle 8.1Diagnose-LEDs

Wichtig: Eine leuchtende rote LED auf PR-10701 zeigt immer ein Problem an. Rote LEDs sind im Normalbetrieb immer abgeschaltet, ob Sensoren angeschlossen sind oder nicht.

8.1.3 Display nicht lesbar

Wenn das Display aufgrund von extremer Display-Hintergrundbeleuchtung und den Kontrasteinstellungen oder der falschen Anzeigesprache nicht lesbar ist, kön-

8 Fehlersuche 69

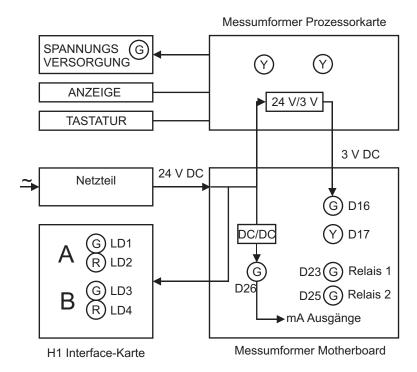


Abbildung 8.5 Diagnose-LED-Funktionen

nen Sie ein Displayreset durchführen. Ein Displayreset stellt temporär die Display-Hintergrundbeleuchtung und den Kontrast auf die Werkseinstellung und geht in die Anzeigesprache Englisch zurück.

Für das Displayreset müssen Sie direkt auf die DTR Tastatur zugreifen. Dann machen Sie Folgendes:

- 1. Schalten Sie das DTR aus.
- 2. Drücken (Halten) Sie die Taste Punkt (Punkt/Komma) auf der Tastatur.
- 3. Schalten Sie das DTR an.
- 4. Halten Sie die Taste Punkt gedrückt, bis das DTR komplett läuft und Sie das Hauptdisplay sehen.

Hinweis: Das Reset auf die Anzeigesprache ist nur temporär, und die Sprache wird zum Original zurückkehren, wenn das DTR das nächste Mal ausgeschaltet wird, es sei denn, die Sprache wird durch das Anzeigeeinstellungsmenü dauerhaft geändert.

8.1.4 Meldung KEIN SENSOR (No sensor)

Ursache: Der Strom im Kabel zu diesem Sensor ist unter 20 mA gefallen. Normalerweise bedeutet das, daß kein Sensor an das Kabel angeschlossen ist oder, daß es keine Kabelverbindung zum DTR gibt. Wenn diese Meldung erscheint, obwohl ein Sensor ordnungsgemäß angeschlossen ist, ist der wahrscheinlichste Grund für diese Meldung ein Fehler im Sensor. Es ist auch möglich, daß das Kabel völlig stromlos ist (zum Beispiel wenn es versehentlich durchgeschnitten wurde).

Siehe auch: Diagnose-LED LD1/LD3, Abschnitt 8.1.2 "Diagnose-LEDs". Im Konzentrations-Display erscheint eine gestrichelte Linie.

8.1.5 Meldung KEIN SIGNAL (No signal)

Abgesehen von dieser Meldung erscheint im Konzentrations-Display eine gestrichelte Linie, obwohl ein Sensor angeschlossen ist.

Ursache: Der Strom im Kabel, das zum Sensor führt, liegt im korrekten Bereich von 20–60 mA, es kommen aber keine Daten von dem Sensor. Das deutet daraufhin, daß die Sensor-Prozessorkarte fehlerhaft ist.

Siehe auch Diagnose-LED LD1/LD3, Abschnitt 8.1.2 "Diagnose-LEDs".

Abhilfe: Tauschen Sie die Sensor-Prozessorkarte aus.

8.1.6 Meldung KURZSCHLUSS (Short-circuit)

Der Strom im Kabel zum Sensor A/B ist höher als 60 mA. Zunächst versucht der DTR für eine kurze Zeit sich wieder mit dem abgefragten Sensor zu verbinden. Wenn der Kurzschluss anhält, wird der abgefragte Sensor vollständigt abgeschaltet, um das Motherboard vor Überhitzung zu schützen.

Siehe auch Diagnose-LED LD2/LD4, Abschnitt 8.1.2, "Diagnose-LEDs".

Hinweis: Wenn zwei Sensoren an den DTR angeschlossen sind, kann ein Kurzschluss in einem der Kabel die Messung beider Sensoren stören, da der DTR versucht, die Verbindung wiederaufzubauen. Die Messung des nicht betroffenen Sensors kehrt wieder in den normalen Zustand zurück, sobald der kurzgeschlossene Sensor abgeschaltet wird.

Wenn der DTR einen fortdauernden Kurzschluss entdeckt, wird der betroffene Sensor abgeschaltet, um weiteren Schaden zu verhindern. Die Meldung KURZSCHLUSS bleibt auf dem Bildschirm bestehen, bis der DTR aus- und wieder eingeschaltet wird. Siehe auch Diagnose-LED LD2/LD4, Abschnitt 8.1.2, "Diagnose-LEDs".

Ursache und Abhilfe: Der wahrscheinlichste Grund für diese Medungen ist ein Problem im Kabel, das den abgefragten Sensor mit dem DTR verbindet. Vergewissern Sie sich, daß das Kabel nicht beschädigt ist und ersetzen Sie es bei Bedarf. Schalten Sie dann den DTR aus und wieder an.

8.1.7 Meldung HOHE SENSORFEUCHTE (High sensor humidity)

Diesse Meldung bedeutet, daß die an der Sensor-Prozessorkarte gemessene Feuchtigkeit 60 % relative Feuchtigkeit übersteigt. Der Grund dafür kann sein, daß Feuchtigkeit durch die Prismadichtung eindringt oder, daß die Abdeckung geöffnet ist. Überprüfen Sie auch die Prismadichtung und ersetzen Sie sie bei Bedarf.

8.1.8 Meldung HOHE SENSORTEMPERATUR (High sensor temp)

Die Temperatur auf der Sensor-Prozesskarte übersteigt $65\,^{\circ}$ C ($150\,^{\circ}$ F). Sie können die Temperatur ablesen, wenn Sie 2 SENSOR STATUS aus dem Hauptmenü wählen. Lesen Sie auch im Abschnitt 2.2.1, "Auswahl des Einbauorts für den Sensor" nach.

8 Fehlersuche 71

8.1.9 Meldung HOHE MESSUMFORMER TEMP. (High transmitter temp)

Die Temperatur des Motherboards vom Messumformer übersteigt 60 °C (140 °F). Sie können die Temperatur ablesen, wenn sie 3 SENSOR-STATUS aus dem Hauptmenü wählen und dann DTR TMP überprüfen. Wenn die Warnmeldung anhält, sollte der Messumformer an einem kühleren Ort montiert werden (zum Beispiel: nicht in der Sonne).

8.1.10 Meldung NIEDRIGE SPANNUNG MESSUMF. (Low transmitter volt)

Die internen Gleichstromspannungen des Messumformers liegen unterhalb der Spezifikationen. Überprüfen Sie die Netzeingangsspannung. Wenn die Netzspannung innerhalb der Spezifikation liegt, tauschen Sie das Netzteilmodul aus (Abbildung 8.1).

8.1.11 Relais und Schalter funktionieren nicht

Überprüfen Sie die Konfiguration, Abschnitt 5.3, "Anzeige der Systeminformationen". Ratschläge zur Behebung finden Sie möglicherweise im Abschnitt 6.3.2, "Konfigurieren der Eingangsschalter", Abschnitt 6.3.1 "Konfigurieren der Relais", und Abschnitt 6.5 "Konfigurieren der Prismenreinigung".

Der Relais-Status wird durch die LEDs D23, D25 auf dem Motherboard angezeigt, siehe Abschnitt 8.1.2 "Diagnose-LEDs". Zur Überprüfung der Schalter sollten Sie auch die LED D26 auf dem Motherboard untersuchen, um zu sehen, ob die Spannung von 3 V DC anliegt, siehe Abschnitt 8.1.2 "Diagnose-LEDs".

Die Reinigungs-Funktion kann wie in Abschnitt 5.1.3 "Prismenreinigungstest" beschrieben, überprüft werden.

8.1.12 Ausgangssignal-Fehler während NORMALER BETRIEB (Normal operation)

Wenn kein Ausgangssignal vorhanden ist, sollten Sie die Verdrahtung (Abschnitt 3.3, "Elektrische Anschlüsse") und die Diagnose-LED D26 (Abschnitt 8.1.2, "Diagnose-LEDs") überprüfen.

Wenn das mA-Signal nicht der Konzentrationsanzeige entspricht, überprüfen Sie die Ausgangssignal-Konfiguration, Abschnitt 5.3, "Anzeige der Systeminformationen". Tipps zum Beheben dieses Problems finden Sie möglicherweise im Abschnitt 6.3.3, "Konfigurieren der mA-Ausgänge". Ein niedriges mA-Signal kann auch von einem hohen Widerstand in der externen Stromschleife verursacht werden, siehe Abschnitt 3.3, "Elektrische Anschlüsse".

Ein verrauschtes Signal kann gedämpft werden, Abschnitt 6.1, "Konfigurieren der Ausgangssignaldämpfung".

8.2 Messung

8.2.1 Meldung STREULICHT-FEHLER (Outside light error)

Ursache: Die Messung ist nicht möglich weil zuviel Aussenlicht auf den CCD-Chip fällt.

Abhilfe: Identifizieren Sie die Lichtquelle (zum Beispiel, wenn die Sonne in einen geöffneten Tank oder durch ein lichtdurchlässiges Rohr scheint) und unterbinden Sie den Lichteinfall auf das Prisma an der Sensorspitze.

8.2.2 Meldung KEIN OPTISCHES ABBILD (No optical image)

Das optisches Abbild lässt sich aufrufen, indem man 3 SENSOR-STATUS aus dem Hauptmenü wählt, Abschnitt 5.4.1. Es gibt hierfür einige mögliche Ursachen:

- 1. Das Prisma ist stark belegt Abschnitt 4.1. Führen Sie eine Prismenreinigung durch, wenn verhanden, Abschnitt 5.1.3 "Prismenreinigungstest". Entfernen Sie den Sensor aus der Prozessleitung und säubern Sie das Prisma manuell.
- 2. Es befindet sich Kondensat im Sensorkopf, siehe Abschnitt 8.1.7.
- 3. Die Sensorkopf-Temperatur ist zu hoch, siehe Abschnitt 8.1.8.
- 4. Die Lichtquelle ist fehlerhaft. Wenn der Sensor aus dem Prozess entfernt wird, kann man das gelbe blinkende Licht durch das Prisma sehen. Hinweis: Das Licht ist nur sichtbar aus einem schrägen Blickwinkel. Überprüfen Sie auch den LED-Wert in der Sensorstatus-Anzeige (wählen Sie 3 SENSOR-STATUS im Hauptmenü); Wenn der Wert deutlich unter 100 liegt, ist ein LED-Fehler unwahrscheinlich.
- 5. Man kann Negativspitzen im optischen Abbild erkennen. Die Ursache ist wahrscheinlich Staub oder Fingerabdrücke auf dem CCD-Fenster.
- 6. Die CCD-Karte im Sensor ist fehlerhaft.

8.2.3 Meldung PRISMA BELEGT (Prism coated)

Ursache: Die Oberfläche des Prismas ist mit einer Schicht des Prozsessmediums oder Verunreinigungen aus dem Prozessmedium belegt.

Abhilfe: Führen Sie eine Prismenreinigung durch, falls vorhanden (Abschnitt 5.1.3 "Prismenreinigungstest"). Entfernen Sie den Sensor aus der Leitung und säubern Sie das Prisma manuell.

Wenn das Problem immer wiederkehrt, sollte Sie evtl. die Strömungsbedingugen verbessern (siehe Abschnitt 2.2, "Einbau des Sensors") oder, wenn eine Prismenreinigung zur Verfügung steht, müssen Sie evtl. die Reinigungs-Parameter neu einstellen, siehe Abschnitt 6.5, "Konfigurieren der Prismenreinigung".

8.2.4 Meldung STREULICHT AUF PRISMA (Outside light to prism)

Ursache: Licht von außerhalb trifft auf den Sensor und kann die Messung verfälschen.

Abhilfe: Identifizieren Sie die Lichtquelle (zum Beispiel: wenn die Sonne in einen geöffneten Tank scheint oder ein lichtdurchlässiges Rohr vorhanden ist) und unterbinden Sie den Lichteinfall auf das Prisma an der Sensorspitze.

8.2.5 Meldung NIEDRIGE ABBILDQUALITÄT (Low image quality)

Ursache: Die wahrscheinlichste Ursache für diese Meldung ist eine Belagsbildung auf dem Prisma. Es ist zwar immer noch ein optisches Abbild vorhanden, aber die Qualität der Messung ist wahrscheinlich nicht optimal.

8 Fehlersuche 73

Abhilfe: Säubern Sie das Prisma, siehe Abschnitt 8.2.3 oben.

8.2.6 Meldung KEIN PROBE (No sample)

Der Betrieb des Gerätes ist einwandfrei, aber es ist keine Prozessflüssigkeit auf dem Prisma. Das optische Abbild sieht aus wie in Abbildung 1.3, links.

8.2.7 Meldung Fehler Temperaturmessung (Temp measurement fault)

Das deutet auf ein fehlerhaftes Temperatur-Element hin. Klemmen Sie die Leitungen des Temperatursensors von den Anschlussklemmen auf der Prozessorkarte ab. Der Widerstandswert des Pt-1000 Elements sollte in der Nähe von 1000 Ω liegen.

Hinweis: Eine Abweichung zu anderen Prozess-Temperaturmessungen bedeutet nicht, daß es sich hier um einen Fehler handelt. Das PR-23 misst die tatsächliche Temperatur der Prismaoberfläche.

8.2.8 Drift der Konzentration bei NORMALER BETRIEB (Normal operation)

Bei einer Verschiebung nach oben, ist eine Prismabelag wahrscheinlich, siehe Abschnitt 4.1, "Prismabelag". Andernfalls überprüfen Sie die Kalibrierung (Abschnitt 6.4, "Kalibrieren der Konzentrationsmessung") und die Sensorverifizierung (Abschnitt 5.5, "Sensorverifizierung").

8.3 Reinigung

8.3.1 Meldung externes halten (External hold)

Die Konzentrationsmessung ist 'eingefroren', weil ein externer Schalter geschlossen wurde. Weitere Informationen dazu entnehmen Sie bitte dem Abschnitt 6.3.2, "Konfigurieren der Eingangsschalter".

8.3.2 Meldungen VORBEREITUNG (*Preconditioning*), REINIGUNG (*Wash*), ERHOLUNG (*Recovering*)

- VORBEREITUNG: Ein optionales Vorbereitungs-Relais wird geschlossen, siehe Abschnitt 6.5 "Konfigurieren der Prismenreinigung".
- REINIGUNG: Das interne Reinigungsrelais ist geschlossen, siehe Abschnitt 6.5 "Konfigurieren der Prismenreinigung".
- ERHOLUNG: Die Konzentrationsmessung steht auf Halten währen einer voreingestellten Erholzeit.

8.3.3 Meldung PRISMENSPÜLWARNUNG (Prism wash warning)

Kein Einbruch des n_DWerts während der Prismenreinigung. Die akzeptierte Größe des Einbruchs ist als REINIGUNG-CHECK (*Wash check*)-Funktion eingestellt, Abschnitt 6.5,

"Konfigurieren der Prismenreinigung". Siehe auch Abschnitt 5.1.3 "Prismenreinigungstest".

8.3.4 Meldung FEHLER PRISMAREINIGUNG (Prism wash failure)

Kein Abfall des n_D -Wertes während der Prismenreinigung. Die akzeptierte Größe des Abfalls wird mit der Funktion REINIGUNG-CHECK (*Wash check*) eingestellt Abschnitt 6.5, "Konfigurieren der Prismenreinigung". Siehe auch Abschnitt 5.1.3 "Prismenreinigungstest".

8.3.5 Meldung EXTERNER REINIGUNG-STOPP (External wash stop)

Gibt an, daß der Reinigungsvorgang verhindert wurde, weil ein externer Reinigungs-Stopp-Schalter geschlossen ist, siehe Abschnitt 6.3.2 "Konfigurieren der Eingangsschalter".

8.3.6 Meldung NIEDR. TEMP. REINIGUNG-STOPP (Low temp wash stop)

Gibt an, daß der Reinigungsvorgang verhindert wurde, weil eine niedrige Prozesstemperatur auf ein leeres Rohr hindeutet. Im Abschnitt 6.5 "Konfigurieren der Prismenreinigung" erfahren Sie, wie Sie den Grenzwert einstellen können.

8.3.7 Meldung KEINE PROBE/REINIGUNG-STOPP (No sample/wash stop)

Gibt an, daß der Reinigungsvorgang verhindert wurde, da die Prozessleitung leer ist und das Prisma sauber ist.

75 8 Fehlersuche

8.4 Tabelle Diagnosemeldungen

Wichtig: Die Meldungen sind in absteigender Reihenfolge ihrer Priorität aufgelistet. Beispiel: Wenn beide Meldungen KEIN OPTISCHES ABBILD (No optical image) und FEHLER TEMPERATURMESSUNG (Temp measurement fault) aktiviert werden, wird nur KEIN OPTISCHES ABBILD angezeigt. Die mit der Reinigung verbundenen Meldungen haben nur während des Reinigungszyklus (Vorbereitung-Reinigung-Erholung) Vorrang.

Wenn ein Relais mit INSTRUMENTENFUNKTION OK (siehe Abschnitt 6.3.1) konfiguriert wird, ist es, wenn es keine Funktionsstörung gibt, d. h. wenn das Instrumente ok ist, geschlossen.

> Kehrt auf StandardmA-Wert zurück

Abschnitt	Conc	Temp
8.1.6	Х	Х
8.1.5	Х	Х
8.2.1		
8.2.2	X	
8.2.7	X	Х
8.3		
8.3		
8.3		
8.1.7		
8.1.8		
8.1.9		
8.1.10		
8.3.5		
8.3.6		
8.3.7		
6.2.1		
8.2.6	X	
8.2.3	X	
8.2.4		
8.2.5		
8.3.4		
8.3.3		
8.1.4	X	Х
	8.1.6 8.1.5 8.2.1 8.2.2 8.2.7 8.3 8.3 8.3 8.3 8.1.7 8.1.8 8.1.9 8.1.10 8.3.5 8.3.6 8.3.7 6.2.1 8.2.6 8.2.3 8.2.4 8.2.5 8.3.4 8.3.3	8.1.6 X 8.1.5 X 8.2.1 8.2.2 X 8.2.7 X 8.3 8.3 8.3 8.3 8.1.7 8.1.8 8.1.9 8.1.10 8.3.5 8.3.6 8.3.7 6.2.1 8.2.6 X 8.2.3 X 8.2.4 8.2.5 8.3.4 8.3.3

9 Sensor-Spezifikationen

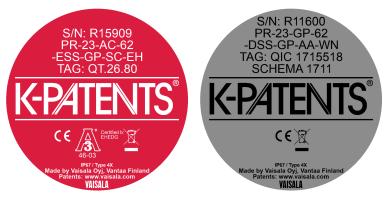


Abbildung 9.1 Sensor-Typenschilder

9.1 Sensor-Kompatibilität

Elektrisch: Alle PR-23 Refraktometer-Sensoren von Vaisala sind untereinander austauschbar. Die PR-23-Sensoren sind **nicht** austauschbar mit den Sensoren aus der Reihe PR-01 und PR-03. Darüberhinaus sind die PR-23-Sensoren nicht kompatibel mit den PR-01/PR-03-Messumformern vom Typ IT-R.

Mechanisch: Das Hygiene-Prozessrefraktometer PR-23-AC-62-HSS paßt an den gleichen 2 1/2" Hygiene-Prozessanschluss wie das Hygiene-Refraktometer PR-03-A62-HSS.

9.2 Sensor-Messbereich

Der Brechungsindex-Standardbereich eines PR-23 Refraktometer-Sensors liegt zwischen 1,320–1,530 (entspricht 0–100 Brix), Abbildung 9.2.

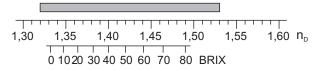
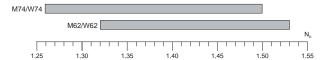



Abbildung 9.2 PR-23-Messbereich

Die Refraktometermodelle PR-23-M und PR-23-M für aggressive Lösungen und ultrareine Feinchemikalien können mit einem Saphirprisma mit einem Brechungsindex-Messbereich von 1,2600-1,500 ausgestattet werden, Abbildung 9.3.

Abbildung 9.3 PR-23-M/W Messbereich mit Saphirprisma (74) und mit Standardprisma (62)

9.3 Hygiene-Prozessrefraktometer PR-23-AC

Das Refraktometer PR-23-AC ist ein 3A Hygiene-Prozessrefraktometer zur Messung von Konzentrationen *in einer Rohrleitung*. Sie können es entweder direkt in einer beliebigen Rohrleitung oder mittels einem Durchflussadapter installieren. Das Hygiene-Prozessrefraktometer eignet sich für alle Lebensmittel- und Getränkeanwendungen, bei denen die Online-Überwachung und -steuerung helfen, die Produktqualität zu verbessern und die Kosten zu verringern.

9.3.1 PR-23-AC Sensor, Modellkodierung

HYGIENE KOMPAKTREFRAKTOMETER für Rohrleitungen

9		
Modell und Beschreibung	Modell	
PR-23 = Refraktometer	PR-23	
Sensormodell -A = 3-A Hygienestandard 46-03 zertifiziert Sensortyp C = Kompaktmodel für Rohrleitungsinstallationen Brechungsindexbereich -62 = R.I. 1,320–1,530 n _D (0-100 Brix) Spinell-Prisma -73 = R.I. 1,320–1,530 n _D (0-100 Brix) Saphir-Prisma -74 = R.I. 1,260–1,470 n _D Saphir-Prisma (A) Prozessanschluss -H = Hygienische 3A-Klemme, 2½", Einbaulänge 14 mm -E = Varivent® Klemme DN65 -N = Hygienische 3A-Klemme, 2½", Einbaulänge 14 mm, Hochdruck, 40 bar bei 20°C -ZC = Sanitary I-line-Anschluss (14 WI) 2½", Einbaulänge 14 mm Sensorkopf Werkstoff SS = AISI 316 L Edelstahl HC = Alloy C276 / ASTM C276 (B) Elektrische Schutzklasse -GP = Sicherer Bereich -AX = ATEX und IECEx zertifiziert Ex II 3G, Ex nA IIC T4 Gc (bis Zone 2) (T _{amb} -20 +65°C -FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T _{amb} -20 +45°C) -CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)		
-A = 3-A Hygienestandard 46-03 zertifiziert	-A	
Sensortyp		
C = Kompaktmodel für Rohrleitungsinstallationen	С	
Brechungsindexbereich		
-62 = R.I. 1,320–1,530 n _D (0-100 Brix) Spinell-Prisma	-62	
-73 = R.I. 1,320–1,530 n _D (0-100 Brix) Saphir-Prisma	-73	
-74 = R.I. 1,260–1,470 n _D Saphir-Prisma (A)	-74	
Prozessanschluss		
-H = Hygienische 3A-Klemme, 2½", Einbaulänge 14 mm	-Н	
-E = Varivent® Klemme DN65	-E	
-N = Hygienische 3A-Klemme, 2½", Einbaulänge 14 mm, Hochdruck, 40 bar bei 20°C	-N	
-ZC = Sanitary I-line-Anschluss (14 WI) 2½", Einbaulänge 14 mm		
Sensorkopf Werkstoff		
SS = AISI 316 L Edelstahl	SS	
HC = Alloy C276 / ASTM C276 (B)		
Elektrische Schutzklasse		
-GP = Sicherer Bereich	-GP	
-AX = ATEX und IECEx zertifiziert Ex II 3G, Ex nA IIC T4 Gc (bis Zone 2) (T _{amb} -20 +65°C	-AX	
-FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T _{amb} -20 +45°C)	-FM	
-CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)	-CS	
-IA = ATEX und IECEx zertifiziert Ex II 1G, Ex ia IIC T4 Ga (bis Zone 0) (T _{amb} -20 +65°C (C)	-IA	
-IF = FM-zertifiziert nach US-amerikanischen und kanadischen Standards Klasse I, Div.1, Gruppen	-IF	
A, B, C, D, T4 (T _{amb} -20 +45°C) (C)		
Sensorgehäuse		
-AA = Eloxiertes Aluminium	-AA	
-SC = AISI 316 Edelstahl	-SC	
EHEDG-Option		
-EH = EHEDG Type EL Class I zertifiziertes Modell (D)	-EH	
Polierung-Option		
-EP = Elektropolierte Kontaktoberflächen (RA 0.38μ, 15 μ inch) (E)		

- (A) Diese Option kann die Lieferzeit beeinflussen
- $\textbf{(B)}\ \text{Diese}\ \text{Option}\ \text{kann}\ \text{die}\ \text{Lieferzeit}\ \text{beeinflussen}.\ \text{Inklusive}\ \text{Prozessanschluss-Dichtring}\ \text{Teflon}$
- 2.5" und Anschweissring aus Alloy C
- (C) Nur mit STR-Messumformer und IS-Isolator erhältlich
- (D) Für -H, -E, -N Prozessanschlüsse
- (E) Nur für AISI 316 L Edelstahl

9.3.2 PR-23-AC Montageteile, Modellkodierung

Rohrbogendurchflusszelle für PR-23-AC-62-HSS Sensor

Modell und Beschreibung	Modell
AFC = Rohrbogendurchflusszelle	AFC
Sensoranschluss	
-H = Hygienische 3A-Klemme, 2½"	-H
Durchflusszelle-Material	
SS = AISI 316 L Edelstahl	
Prozessanschluss	
-H = Hygienische 3A-Klemme	-H
Rohrdurchmesser	
10 = 25 mm (1")	10
15 = 40 mm (1½")	15
20 = 50 mm (2")	20
25 = 65 mm (2½") (A)	25
30 = 80 mm (3") (A)	30
40 = 100 mm (4") (A)	40
Durchflusszelle-Einlasstyp	
-SI = Gerades Rohr	-SI
-RI = Reduziertes Rohr (Kegel)	-RI
Polierung-Option	
-EP = Elektropolierte Kontaktoberflächen (RA 0.38μm, 15 μ inch)	-EP

(A) Nur mit -SI Option

EHEDG zertifizierte Durchflusszelle, Hygienische 3A-Klemme 2% "Anschluss

Modell und Beschreibung				
AFC = Rohrbogendurchflusszelle				
Sensoranschluss				
-H = Hygienische 3A-Klemme, 2½"	-Н			
Durchflusszelle-Werkstoff				
SS = AISI 316 L Edelstahl				
Prozessanschluss				
-H = Hygienische 3A-Klemme	-Н			
Rohrdurchmesser				
20 = 50 mm (2")				
Durchflusszelle-Einlasstyp				
-SI = Gerades Rohr	-SI			

EHEDG	
-EH = EHEDG Typ EL Klasse I zertifiziertes Modell	-EH
Polierung-Option	
-EP = Elektropolierte Kontaktoberflächen (RA 0.38μm, 15 μ inch)	-EP

Rohrbogendurchflusszelle mit Prismenreinigungsdüse für PR-23-AC-62-HSS

Modell und Beschreibung	Modell
AFC = Rohrbogendurchflusszelle	AFC
Sensoranschluss	
-H = Hygienische 3A-Klemme, 2½"	-Н
Durchflusszelle-Werkstoff	
SS = AISI 316 L Edelstahl	SS
Prozessanschluss	
-H = Hygienische 3A-Klemme	-H
Rohrdurchmesser	
10 = 25 mm (1")	10
15 = 40 mm (1½")	15
20 = 50 mm (2")	20
25 = 65 mm (2½") (A)	25
30 = 80 mm (3") (A)	30
40 = 100 mm (4") (A)	40
Durchflusszelle Einlasstyp	
-SI = Gerades Rohr	-SI
-RI = Reduziertes Rohr (Kegel)	-RI
Reinigungsdüse-Anschluss	
-NC = Reinigungsdüseanschluss	-NC
Reinigungsdüsen	
-SN = Dampfdüse, Gewinde G ¼" weiblich	-SN
-WN = Wasserdüse, Gewinde G ¼" weiblich	-WN
-WP = Hochdruckwasserdüse, Gewinde G ¼" weiblich	-WP
-PG = Blindstopfen für Düsenanschluss	-PG

(A) Nur mit -SI Option

Montageteile für PR-23-AC-62-HSS Sensor

Modell und Beschreibung	Modell
MFC = Mini-Durchflusszelle	MFC
Sensoranschluss	
-H = Hygienische 3A-Klemme, 2½"	-Н
Durchflusszelle-Werkstoff	
SS = AISI 316 L Edelstahl	ss
Prozessanschluss	
-H = Hygienische 3A-Klemme	-Н
Rohrdurchmesser	
05 = 15 mm (½")	05

Montageteile für PR-23-AC-62-ESS Sensor

Modell und Beschreibung	Modell			
TDN = Varivent® Inline Einbaugehäuse mit Varivent Klemme DN65 Type N (A)				
Rohrdurchmesser				
-40 = 40 mm (1½")	-40			
-50 = 50 mm (2")	-50			
-65 = 65 mm (2½")	-65			
-80 = 80 mm (3")	-80			
-100 = 100 mm (4")	-100			
-125 = 125 mm (5")	-125			
-150 = 150 mm (6")	-150			
Gegenflansch-Optionen				
-SN = Dampfdüse, Gewinde G¼ weiblich	-SN			
-WP = Hochdruckwasserdüse, Gewinde G¼ weiblich	-WP			
-WN = Wasserdüse, Gewinde G¼ weiblich	-WN			
-PG = Varivent Blindflansch Typ N	-PG			

(A) Enthält einen 2%" Typ N Blindflansch mit 2%" EPDM Dichtung und 2%" Varivent-Klemme Typ N

Seitliche Durchflusszelle, Hygienische 3A-Klemme 2½" Anschluss

Modell and Beschreibung	Modell		
SFC = Seitliche Durchflusszelle (A)			
Sensoranschluss			
-HH = Hygienische 3A-Klemme, 2½"	-Н		
Durchflusszelle-Werkstoff			
SS = AISI 316 L Edelstahl	SS		
Prozessanschluss			
-H = Hygienische 3A-Klemme			
Rohrdurchmesser			
10 = 25 mm (1")	10		
15 = 40 mm (1½")	15		
20 = 50 mm (2")	20		
25 = 65 mm (2½")	25		
Durchflusszelle Ein- und Auslass			
-090 = Rohrbogen, 90 Grad	-90		
-180 = Gerades Rohr, 180 Grad	-180		

⁽A) (A) Enthält einen 2%" Blindflansch mit 2%" EPDM Dichtung und eine 2%" Hygienische 3A-Klemme

9.3.3 PR-23-AC Spezifikationen

Allgemeine Spezifikationen

Brechungsindexbereich: Gesamter Bereich $n_D 1,3200-1,5300$

(entspricht heißem Wasser – 100 Brix)

Genauigkeit: Brechungsindex n_D± 0,0002 (entspricht

normalerweise ± 0,1 Gew.%) Reproduzierbarkeit und Stabilität entsprechen der Genauigkeit

Ansprechgeschwindigkeit: 1 s ungedämpft, Dämpfungszeit wählbar

bis zu 5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von n_D1,3200-1,5300

CORE-Optik: Keine mechanischen Einstellungen

(US Patent No. US6067151)

Digitale Messung: 3648 Pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge,

Natriumlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten

und gemäß von Vaisala dokumentiertem Ver-

fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)

SENSOR PR-23-AC: Kompaktes Sensor-Modell für kleine Rohrlei-

tungen

Prozessanschluss: Hygiene-3A-Klemme 2,5"; Varivent® Inline

Gehäuseanschluss-Klemme DN65 (für Leitungs-

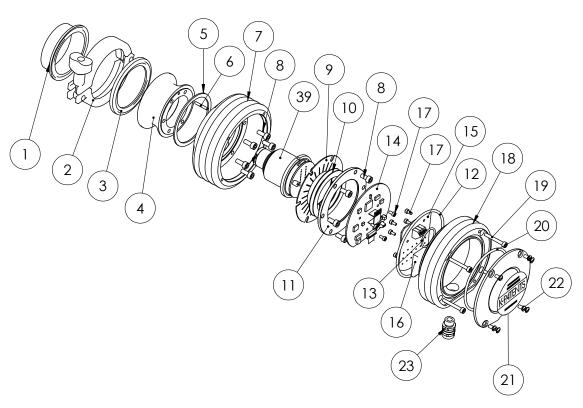
größen von 2,5" und kleiner)

Hygienisches Design: 3-A Hygienisch nach der Norm 'Standard 46-03'

zugelassen und von der EHEDG (European Hygie-

nic Equipment Design Group) getestet

Prozessdruck: Hygiene-Klemme max. 15 bar (200 psi) bei 20 °C

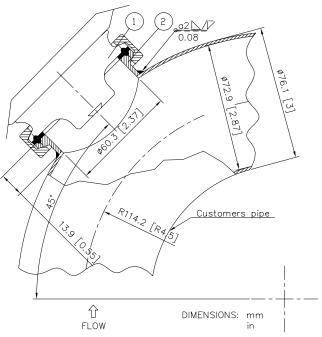

(70 °F)/9 bar (125 psi) bei 120 °C (250 °F)

Prozesstemperatur: -20 °C -+130 °C (-4 °F- +266 °F)
Prozessberührte Teile, Standard: AISI 316L Edelstahl, Prisma Spinel,

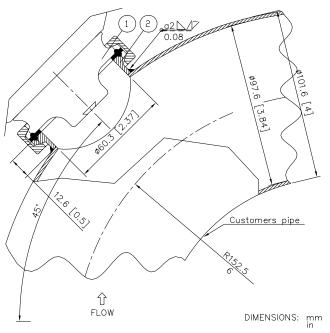
Prismadichtungen PTFE (Teflon®)

Sensor-Schutzklasse: IP67, Nema 4X Sensorgewicht: 2,0 kg (4,4 lbs)

9.3.4 PR-23-AC Teileliste


Art.	Stck	Teile-Nr.	Beschreibung				
1	1	PR-9205	2,5" Hygiene-Montagestutzen				
2	1	PR-9201	2,5" Hygiene-Klemme				
3	1	PR-9202	2,5" Hygiene-Dichtung EPDM				
3	1	PR-9203	2,5" Hygiene-Dichtung NBR				
3	1	PR-9204	2,5" Hygiene-Dichtung PTFE (Teflon [®])				
4	1	PR-10001	PR-23 H-Kopf (3A-Hygiene-Klemmen-Anschluss)				
4	1	PR-10021	PR-23 E-Kopf (Varivent® Anschluß)				
5	1		Wärmeisolator PTFE (Teflon®)				
6	1		Zentrierstift				
7	1	PR-10005	PR-23 Basiselement				
8	6		Schraube M5x10 DIN 912 A2				
9	1	PR-9011	Wärmeleiter				
*	1	PR-9010	Tellerfedern-Satz				
10	2		Tellerfeder	A	Ca-I.	Teile-Nr.	Daraharihaan
11	1		Tellerfederhalter	Art.	Stck	ielie-ivr.	Beschreibung
12	1	PR-10031	O-Ring-Dichtung 89.5 x 3	18	1	PR-10000	PR-23 Abdeckung
13	1	PR-10032	O-Ring-Dichtung 24 x 2	19	4		Schraube M4x30 DIN 912 A4
14	1	PR-10100	Sensor-Prozesskarte	20	1	PR-10002	O-Ring-Dichtung 82x3
15	1	PR-10300	Busabschlusskarte	21	1		PR-23-A Endplatte mit Typenschild
16	1	PR-9108	Trockner für PR-23	22	4		Schraube M4x8 DIN 964 A4
17	8		Schraube M3x6 DIN 912 A2	23	1		Kabeldurchführung M16x1.5

9.3.5 PR-23-AC Montagehinweise


Das Vaisala K-PATENTS[®] Hygiene-Prozessrefraktometer PR-23-AC wird über eine 2 1/2" 3A Hygiene-Klemme an den Prozess angeschlossen. Es wird eine Montage in einem Rohrbogen empfohlen. Dabei sollte die Anströmung vertikal von unten erfolgen. Dadurch wird folgendes erreicht:

- 1. Die Selbstreinigung des Prismas auf Grund der Strömung, die gegen die Oberfläche gerichtet ist.
- 2. Eine vollständige Entleerung, wenn das Rohr abgelassen wird.

Bei einem *Rohrdurchmesser von 3" oder mehr*, wird ein Stutzen direkt an die Rohrleitung geschweißt, Abbildungen 9.4 und 9.5 (ein Anschweissstutzen, Länge 21,5 mm, ist bei der Standard-Lieferung des Sensors von Vaisala enthalten). *Für kleinere Rohrdurchmesser* gibt es Durchflussadapter von Vaisala (siehe Abbildungen 9.6, 9.7, 9.8 und 9.9 und Tabellen in Abschnitt 9.3.2). Die Durchflussadapter sind mit herkömmlichen 90°-Bogenstücken austauschbar.

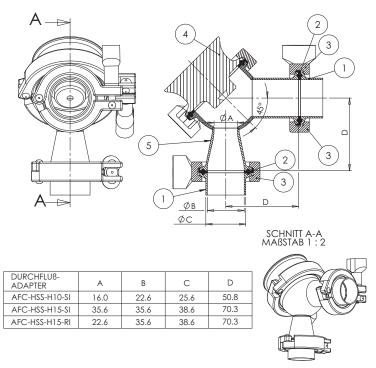


Abbildung 9.4 Montage mit Hygiene-Stutzen *Rohrdurchmesser 3" (80 mm)*

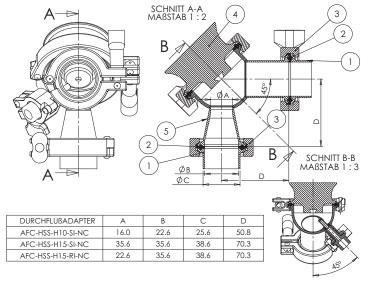
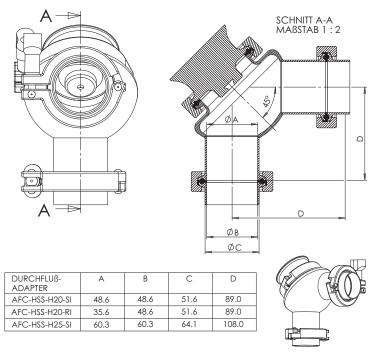


Abbildung 9.5 Montage mit Hygiene-Stutzen *Rohrdurchmesser 4" (100 mm) oder größer*


PR-23 Betriebsanleitung

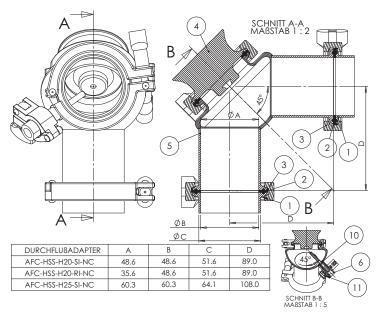

Abbildung 9.6 Durchflussadapter AFC-HSS-H10 für Rohrdurchmesser 1" (25 mm) und H15 für Rohrdurchmesser 1 1/2" (40 mm)

Abbildung 9.7 Durchflussadapter AFC-HSS- mit Reinigungsdüsenanschluss (-NC) *H10 für Rohrdurchmesser 1" (25 mm) und H15 für Rohrdurchmesser 1 1/2" (40 mm)*

Abbildung 9.8 Durchflussadapter AFC-HSS-H20 für Rohrdurchmesser 2" (50 mm) und H25 für Rohrdurchmesser 2 1/2" (65 mm)

Abbildung 9.9 Durchflussadapter AFC-HSS- mit Reinigungsdüsenanschluss (-NC) *H20 für Rohrdurchmesser 2" (50 mm) und für Rohrdurchmesser 2 1/2" (65 mm)*

9.3.6 PR-23-AC I-Leitungsanschluss

Das Vaisala K-PATENTS[®] Sanitary Refractometer PR-23-AC-ZC kann mit Hilfe von 2,5-Zoll Cherry Burrell I-Leitungsanschlüssen mit 3-A Sanitary-Zulassung montiert werden, die aus ineinander greifenden Flachseitenhülsen, einer Flachdichtung und einer Klemme bestehen. Da hier Metall und Metall ineinander greifen, wird eine Überkompression durch die Klemme vermieden, so dass die Dichtung nicht zur Produktkontaktseite extrudiert werden kann.

Das Material der produktberührten Teile des Sensors sind AISI 316L oder Alloy C, die Dichtungen sind aus EPDM.

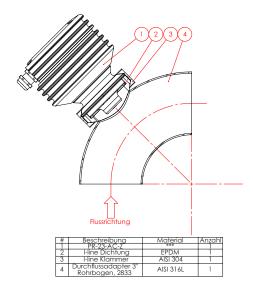


Abbildung 9.10 I-Leitungsanschluss

9.3.7 Montagevorgaben für EHEDG-zertifizierte PR-23-AC Konfigurationen

Vaisala bietet gewisse PR-23-AC Konfigurationen an, die zertifiziert wurden, um den Hygieneanforderungen der EHEDG (European Hygienic Engineering & Design Group) zu entsprechen. In diesem Zertifizierungsverfahren wurden die hygienischen Eigenschaften von sowohl Refraktometer, als auch Prozessanschluss entsprechend den geltenden Anforderungen geprüft...

Um eine Anlage nach EHEDG-Anforderungen zu gewährleisten, folgen Sie den Montagevorgaben der Montagezeichnung, die von Vaisala bei jedem PR-23-AC Refraktometersensor, der mit EH-Option bestellt wurde, mitgeliefert wird.

9.3.8 Übereinstimmung mit 3A Hygienestandard

Der Benutzer muss sicherstellen, dass das Refraktometer nicht aufgrund von beschädigten oder abgenutzten Produktkontaktflächen eine Kontaminationsquelle zum Produkt darstellt. Missbrauch (z.B. zu lange Prismenreinigungsdauer oder zu hoher Reinigungsdruck) oder falsche Handhabung können zu Metallkratzern oder aufgerau-

ten Oberflächen führen. Solche Flächen bleiben bei der Verarbeitung möglicherweise nicht sauber.

Vaisala bietet ein 3A Sanitary Standard Accepted Reparatur- und Wartungspaket, in dem alle mediumberührten Teile, Prisma, Dichtungen und Trockner ersetzt werden. Beachten Sie, dass diese Reparaturen nur von einem autorisierten 3A Service-Center (Vaisala Werk oder regionaler Hauptsitz) durchgeführt werden dürfen.

9.4 Hygiene-Sondenrefraktometer PR-23-AP

Das Vaisala K-PATENTS® Hygiene-Sondenrefraktometer PR-23-AP bietet präzise Online-BRIXMessungen in Kochapparaten und Tanks.

9.4.1 PR-23-AP Sensor, Modellkodierung

HYGIENE SONDENREFRAKTOMETER für grosse Rohrleitungen und Behälter

Modell und Beschreibung	Modell
PR-23 = Sensor	PR-23
Sensormodell	
-A = 3A-Hygienestandard 46-03 zertifiziert	-A
Sensortyp	
P = Sondenmodel für Installation im Behälter und in grosse Rohrleitungen	Р
Brechungsindexbereich	
-62 = R.I. 1,320–1,530 n _D (0-100 Brix) Spinell-Prisma	-62
-73 = R.I. 1,320–1,530 n _D (0-100 Brix) Saphir-Prisma	-73
-74 = R.I. 1,260–1,470 n _D Saphir-Prisma	-74
Prozessanschluss	
-T = Hygienische 3A-Klemme, 2½", Einbaulänge 170 mm (A)	-T
-N = Hygienische 3A-Klemme, 2½", Einbaulänge 14 mm, hochdruck, 40 bar bei 20°C (A)	-N
-I = Hygienische 3A-Klemme, 2½", Einbaulänge 42 mm (A)	-1
-R = Hygienische 3A-Klemme, 4", Einbaulänge 170 mm (A)	-R
-S = Hygienische 3A-Klemme, 4", Einbaulänge 63 mm (A)	-S
-P = MT4 DN 25/1T APV Tankbodenflansch, Wandbündig (B)	-P
-B = MT4 DN25/1T APV Tankbodenflansch, Einbaulänge 170 mm (C)	-В
-V = Hygienische 3A-Klemme, 2½", Einbaulänge 170 mm (D)	-V
-H = Hygienische 3A-Klemme, 2½", Einbaulänge 14 mm (A)	-H
-Q = Hygienische 3A-Klemme, 2½" für Wandbündig-Adapter, Einbaulänge 140 mm (C)	-Q
-C = Varivent® Inline Einbaugehäuse-Klemme DN 65, Einbaulänge 170 mm (A)	-C
-ZP = Hygienischer I-line-Anschluss, männlich (14 WI) 2½", Einbaulänge 178 mm (B)	-ZP
Sensorkopf Werkstoff	
SS = AISI 316 L Edelstahl	ss

Elektrische Schutzklasse				
-GP = Sicherer Bereich	-GP			
-AX = ATEX und IECEx zertifiziert Ex II 3G, Ex nA IIC T4 Gc (bis zu Zone 2)	-AX			
-FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T _{amb} -20 +45°C)	-FM			
-CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)				
-IA = ATEX und IECEx zertifiziert Ex II 1G, Ex ia IIC T4 Ga (bis zu Zone 0) (T _{amb} -20 +65°C) (E)	-IA			
-IF = FM-zertifiziert nach US-amerikanischen und kanadischen Standards Klasse I, Div.1, Gruppen				
A, B, C, D, T4 (T _{amb} -20 +45°C) (E)				
Sensorgehäuse Werkstoff				
-AA = Eloxiertes Aluminium	-AA			
-SC = AISI 316 Edelstahl	-SC			
EHEDG-Option				
-EH = EHEDG Type EL Klasse I zertifiziertes Modell (F)	-EH			

- (A) EHEDG und Hygiene 3-A zertifiziert
- (B) Hygiene 3-A zertifiziert
- (C) Design nach Hygiene 3-A
- (D) Erfordert Einbau-Adapter VFME-23-VSS oder VFMF-23-VSS, Design nach Hygiene 3-A
- (E) Nur mit STR-Messumformer und IS-Isolator erhältlich
- **(F)** Für -T, -N, -I, -R, -S, -H, -C -Anschlüsse

HYGIENE SONDENREFRAKTOMETER PR-23-AP mit Prismenreinigung für grosse Rohrleitungen und Behälter

Modell und Beschreibung	Modell
PR-23 = Sensor	PR-23
Sensormodell	
-A = 3A zertifiziert	-A
Sensortyp	
P = Sondentyp für Behälter und gross Rohrleitung Installation	Р
Brechungsindexbereich	
-62 = R.I. 1,320–1,530 n _D (0-100 Brix) Spinell-Prisma	-62
-73 = R.I. 1,320–1,530 n _D (0-100 Brix) Saphir-Prisma	-73
-74 = R.I. 1,260–1,470 n _D Saphir-Prisma (A)	-74
Prozessanschluss	
-R = Hygienische 3A-Klemme, 4", Einbaulänge 170 mm	-R
Sensorkopf Werkstoff	
SS = AISI 316 L Edelstahl	SS
Elektrische Schutzklasse	
-GP = Sicherer Bereich	-GP
-AX = ATEX und IECEx zertifiziert Ex II 3G, Ex nA IIC T4 Gc (bis zu Zone 2) (T _{amb} -20+65°C)	-AX
-IA = Ex und IECEx zertifiziert Ex II 1G, Ex ia IIC T4 Ga (bis zu Zone 0) (T _{amb} -20+65°C) (B)	-IA

Sensorgehäuse	
-AA = Eloxiertes Aluminium	-AA
-SC = AISI 316 Edelstahl	-SC
Prismenreinigung	
-SN = Integrierte Dampfdüse, AISI 316 L	-SN
-WN = Integrierte Wasserdüse, AISI 316 L	-WN
-WP = Integrierte Hochdruckwasserdüse, AISI 316	

- (A) Diese Option kann die Lieferzeit beeinflussen
- (B) Nur mit STR-Messumformer und IS-Isolator erhältlich

9.4.2 PR-23-AP Montageteile, Modellkodierung

Montageteile für PR-23-AP Sensor

Teilnummer und Beschreibung	Teil-Nr.
VFMA-23-PSS = Tankbodenflansch für PR-23-AP, MT4 DN 25/1T	VFMA-23-PSS
VFBP-23-PSS = Tankbodenblindflansch für PR-23-AP, MT4 DN 25/1T	VFBP-23-PSS
VFME-23-VSS = Montage-Adapter für PR-23-AP-62-VSS HEXNUT Typ	VFME-23-VSS
VFMF-23-VSS = Montage-Adapter für PR-23-AP-62-VSS HEXNUT verlängert	VFMF-23-VSS

Modell und Beschreibung	Modell
AP = Adapter für PR-23-AP	AP
Sensortyp	
-T = Hygienische 3A-Klemme, 2½", Einbaulänge 170 mm	-T
-ZP = Hygienischer I-line-Anschluss, männlich (14 WI) 2½", Einbaulänge 178 mm	-ZP
Adapterwerkstoff	
SS = AISI 316 L Edelstahl	SS
Prozessanschluss	
-P = MT4 DN 25/1T Tankbodenflansch, Wandbündig	-P
Adaptereinbaulänge	
30 = 30 mm	30
Prismenreinigung	
-SN = Integrierte Dampfdüse, AISI 316 L	-SN
-WP = Integrierte Hochdruckwasserdüse, AISI 316 L	-WP
-WN = Integrierte Wasserdüse, AISI 316 L	-WN

Modell und Beschreibung	Modell
WNA = Reinigungsdüse-Adapter	WNA
Sensortyp	
-T = Hygienische 3A-Klemme, 2½", Einbaulänge 170 mm	-Т

-ZP = Hygienischer I-line-Anschluss, männlich (14 WI) 2½", Einbaulänge 178 mm	-ZP
Adaptermaterial	
SS = AISI 316 L Edelstahl	ss
Prozessanschluss	
-H = Hygienische 3A-Klemme, 2½"	-H
Adaptereinbaulänge	
-30 = 30 mm	-30
-117 = 117 mm	-117
Prismenreinigung	
-SN = Integrierte Dampfdüse, AISI 316 L	-SN
-WP = Integrierte Hochdruckdampfdüse, AISI 316 L	-WP
-WN = Integrierte Wasserdüse, AISI 316 L	-WN

Seitliche Durchflusszelle, Hygienische 3A-Klemme 2½" Anschluss

Modell und Beschreibung	Modell
SFC = Seitliche Durchflusszelle (A)	SFC
Sensoranschluss	
-HH = -HH = Hygienische 3A-Klemme, 2½"	-HH
Durchflusszelle-Werkstoff	
SS = AISI 316 L Edelstahl	ss
Rohrdurchmesser	
10 = 25 mm (1")	10
15 = 40 mm (1½")	15
20 = 50 mmm (2")	20
25 = 65 mm (2½")	25
Durchflusszelle Ein- und Auslass	
-090 = Rohrbogen, 90 Grad	-090
-180 = Gerades Rohr, 180 Grad	-180

(A) Enthält einen 2%" Blindflansch mit 2%" EPDM Dichtung und eine 2%" Hygienische 3A-Klemme

Aseptic Dampf Ventil für PR-23-AP-ISS

Modell und Beschreibung	Modell
ASV = Aseptic Dampf Ventil	ASV
Sensoranschluss	
-H = Hygienische 3A-Klemme, 2½"	-H
-E = Varivent® Inline Einbaugehäuse-Klemme DN65	-E
Aseptic Dampf Ventil Werkstoff	
SS = AISI 316 L Edelstahl	SS

Opt	tion	
-ASI	I = Montage-Adapter und Bürkert 8695 Control Head mit AS-Interface	-ASI

Dampfanschluss DIN 10 acc. DIN 32656

9.4.3 PR-23-AP Spezifikationen

Allgemeine Spezifikationen

Brechungsindexbereich: Gesamter Bereich n_D1,3200–1,5300

(entspricht heißem Wasser – 100 Brix)

Genauigkeit: Brechungsindex n_D± 0,0002 (entspricht

normalerweise ± 0,1 Gew.%) Reproduzierbarkeit und Stabilität entsprechen der Genauigkeit

Ansprechgeschwindigkeit: 1 s ungedämpft, Dämpfungszeit wählbar

bis zu 5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von n_D1,3200-1,5300

CORE-Optik: Keine mechanischen Einstellungen

(US Patent No. US6067151)

Digitale Messung: 3648 Pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge,

Natriumlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten

und gemäß von Vaisala dokumentiertem Ver-

fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)

SENSOR PR-23-AP: Sondensensor-Modell für große Rohrleitungen

und Behälter

Prozessanschluss: Hygiene-3A-Klemme 2,5"; Hygiene-3A-Klemme

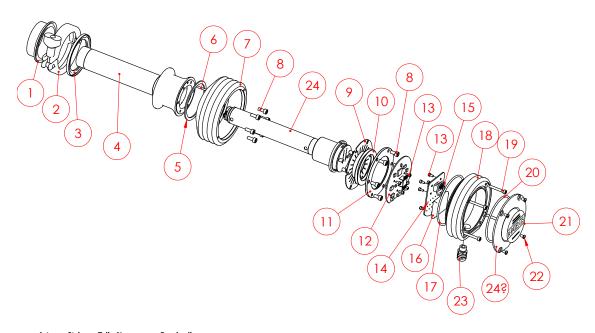
4" oder MT4 DN 25/1T APV Behälterboden-

flansch

Hygienisches Design: 3-A Hygiene Standard 46-03 zugelassen

Prozessdruck: Hygiene-Klemme max. 15 bar (200 psi) bei 20 °C

(70 °F)/9 bar (125 psi) bei 120 °C (250 °F)


Prozesstemperatur: $-20 \,^{\circ}\text{C} - +150 \,^{\circ}\text{C} (-4 \,^{\circ}\text{F} - +302 \,^{\circ}\text{F})$

Prozessberührte Teile, Standard: AISI 316L Edelstahl, Prisma Spinel,

Prismadichtungen PTFE (Teflon®)

Sensor-Schutzklasse: IP67, Nema 4X Sensorgewicht: 3,0 kg (6,6 lbs)

9.4.4 PR-23-AP Teileliste

Art.	Stck	Teile-Nr.	Beschreibung				
1	1	PR-9205	2,5" Hygiene-Montagestutzen				
1	1	VFMA-23-PSS	MT4 DN25/1T APV Behälterbodenflansch				
1	1	PR-9275	4" Hygiene-Montagestutzen				
2	1	PR-9201	2,5" Hygiene-Klemme				
2	1	PR-9271	4" Hygiene-Klemme				
3	1	PR-9202	2,5" Hygiene-Dichtung EPDM				
3	1	PR-9203	2,5" Hygiene-Dichtung NBR	Art.	Stck	Teile-Nr.	Beschreibung
3	1	PR-9204	2,5" Hygiene-Dichtung Teflon	*	1	PR-9010	Tellerfedern-Satz
				10	2		Tellerfeder
3	1	PR-9243	MT4 DN25/1T APV Dichtung EPDM	11	1		Tellerfederhalter
3	1	PR-9272	4" 3A Hygiene-Dichtung EPDM	12	1	PR-10103	Sensor-Prozesskarte
3	1	PR-9273	4" 3A Hygiene-Dichtung NBR	13	8	10105	Schraube M3x6 DIN 912 A2
3	1	PR-9274	4" 3A Hygiene-Dichtung Teflon	14	1	PR-10300	Busabschlusskarte
				15	1	PR-10032	O-Ring-Dichtung 24x2
4	1	PR-10008	PR-23-P-TSS-Kopf	16	1	PR-9108	Trockneransatz
4	1	PR-10006	PR-23-P-PSS-Kopf	17	1	PR-10031	O-Ring-Dichtung 89.5x3
4	1	PR-10007	PR-23-P-RSS-Kopf	18	1	PR-10000	PR-23 Abdeckung
_				19	1		Schraube M4x30 DIN 912 A4
5	1	PR-10048	68x3 O-Ring	20	1	PR-10002	O-Ring-Dichtung 82x3
6	1	DD 4000F	Zentrierstift	21	1		PR-23-A Endplatte mit Typenschild
7	1	PR-10005	PR-23 Basiselement	22	4		Schraube M4x8 DIN 964 A4
8	6	BB 0044	Schraube M5x10 DIN 912 A2	23	1		Kabeldurchführung M16x1.5
9	1	PR-9011	Wärmeleiter	24	1	PR-10022	PR-23-P CORE

9.4.5 PR-23-AP Montagehinweise

Das Sonden-Refraktometer PR-23-AP ist primär für die Montage an einer Behälterwandung gedacht. Um sicherzustellen, daß die Messung repräsentativ ist und, daß das Prisma sauber bleibt, sollte die Sonde nahe einem Rührwerk installiert werden.

Das Vaisala K-PATENTS[®] Sonden-Refraktometer, vom Typ PR-23-AP-T wird über eine 2 1/2" 3A Hygiene-Klemme angeschlossen (Abbildung 9.11). Das Modell PR-23-AP-P wird über eine 4" Hygiene-Klemme angeschlossen.

Hinweis: Bei höheren Prozess- (oder Umgebungs-)Temperaturen sollten Sie anstelle der o.g. Typen einen bündig eingebauten Sensor (9.12) verwenden, bei dem die Elektronik im Sensorkopf weiter von der Prozesswärme entfernt ist (siehe Abbildung 9.12).

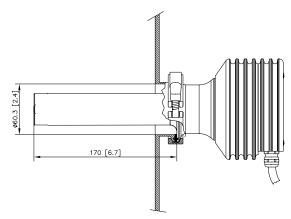
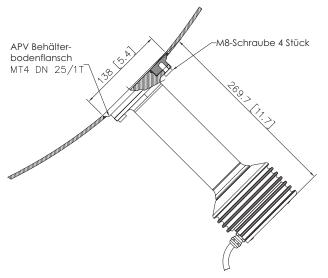



Abbildung 9.11 Einbau des Sonden-Refraktometers PR-23-AP62-TSS

Der Refraktometer-Typ PR-23-AP62-PSS wird mit einem Hygiene-APV-Behälterbodenflansch bündig eingebaut (siehe Abbildung 9.12). Der Sensor kann auch in der Seitenwand bündig eingebaut werden, was den Einsatz eines Abstreifers ermöglicht. Er läßt sich auch leicht durch einen Heizmantel installieren.

Abbildung 9.12 Bündiger Einbau, Sonden-Refraktometer PR-23-AP62-PSS

9.4.6 PR-23-AP I-Leitungsanschluss

Das Vaisala K-PATENTS[®] Sanitary Refractometer PR-23-AP-ZP kann mit Hilfe von 2,5-Zoll Cherry Burrell I-Leitungsanschlüssen mit 3-A Sanitary-Zulassung montiert werden, die aus ineinander greifenden Flachseitenhülsen, einer Flachdichtung und einer Klemme bestehen. Da hier Metall und Metall ineinander greifen, wird eine Überkompression durch die Klemme vermieden, so dass die Dichtung nicht zur Produktkontaktseite extrudiert werden kann.

Das Material der produktberührten Teile des Sensors sind AISI 316L oder Alloy C, die Dichtungen sind aus EPDM.

9.4.7 Montagevorgaben für EHEDG-zertifizierte PR-23-AP Konfigurationen

Vaisala bietet gewisse PR-23-AP Konfigurationen an, die zertifiziert wurden, um den Hygieneanforderungen der EHEDG (European Hygienic Engineering & Design Group) zu entsprechen. In diesem Zertifizierungsverfahren wurden die hygienischen Eigenschaften von sowohl Refraktometer, als auch Prozessanschluss entsprechend den geltenden Anforderungen geprüft.

Um eine Anlage nach EHEDG-Anforderungen zu gewährleisten, folgen Sie den Montagevorgaben der Montagezeichnung, die von Vaisala bei jedem PR-23-AP Refraktometersensor, der mit EH-Option bestellt wurde, mitgeliefert wird.

9.4.8 Übereinstimmung mit 3A Hygienestandard

Der Benutzer muss sicherstellen, dass das Refraktometer nicht aufgrund von beschädigten oder abgenutzten Produktkontaktflächen eine Kontaminationsquelle zum Produkt darstellt. Missbrauch (z.B. zu lange Prismenreinigungsdauer oder zu hoher Reinigungsdruck) oder falsche Handhabung können zu Metallkratzern oder aufgerauten Oberflächen führen. Solche Flächen bleiben bei der Verarbeitung möglicherweise nicht sauber.

Vaisala bietet ein 3A Sanitary Standard Accepted Reparatur- und Wartungspaket, in dem alle mediumberührten Teile, Prisma, Dichtungen und Trockner ersetzt werden. Beachten Sie, dass diese Reparaturen nur von einem autorisierten 3A Service-Center (Vaisala Werk oder regionaler Hauptsitz) durchgeführt werden dürfen.

9.5 Compact Prozess Refraktometer PR-23-GC

Das Vaisala K-PATENTS[®] Compact Prozess Refraktometer PR-23-GC ist für allgemeine Industrieanwendungen mit kleinen Rohrleitungen und Bypassleitungen vorgesehen, z.B. in den Bereichen Chemie, Öl, Gas, Petrochemie und Kraftzellstoffverfahren.

9.5.1 PR-23-GC Sensor, Modellkodierung

MODELL UND BESCHREIBUNG	MODELL
PR-23 = Sensor	PR-23
Sensormodell	
-GC = Allgemein Kompakt	-GC
Brechungsindexbreiche	
-73 = n _p 1,320–1,530 (0–100 Brix) Saphir-Prisma	-73
-74 = n _p 1,260–1,470, Saphir-Prisma (A)	-74
-82 = n _D 1,410–1,620, YAG-Prisma (A)	-82
-92 = n _D 1,520–1,730, GGG-Prisma (A)	-92
Prozessanschluss	
-K = Sandvik L Klemme, 76,1, Einbaulänge 12 mm	-K
Sensormaterial (medienberührend)	
SS = AISI 316 L	SS
HA = Alloy 20	HA
HC = Alloy C / ASTM C276	HC
NI = Nickel 200	NI
TI = Titanium ASTM B348	TI
SU = AISI 904L	SU
XS = SAF2205	XS
Elektrische Schutzklasse	
-GP = Sicherer Bereich	-GP
-AX = ATEX zertifiziert EX II 3 G Eex nA II T4 (bis Zone 2)	-AX
-IA = ATEX and IECEx zertifiziert EX II 1 G Ex ia II C T4 Ga (bis Zone 0)	-IA
-CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)	-CS
-FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T _{amb} -20 +45°C)	-FM
-IF = FM-zertifiziert nach US-amerikanischen und kanadischen Standards Klasse I, Div.1, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C) (A)	-IF
Sensorgehäuse	
-SC = Edelstahl AISI 316	-SC

(A) Nur mit STR-Auswerteelektronik und IS-Isolator erhältlich

Wafer-Durchflusszelle, Modellkodierung

water-butchinusszene, wodenkodierung	
MODELL UND BESCHREIBUNG	MODELL
WFC = Wafer-Durchflusszelle	WFC
Sensoranschluss	
-K = Sandvik L Klemme, 76,1 (Einbaulänge 12 mm)	-K
Durchflusszelle-Material	
-SS = AISI 316 L	SS
-HA = Alloy 20	HA
-HC = Alloy C / ASTM C276 HC	HC
-NI = Nickel 200	NI
-TI = Titanium ASTM B248	TI
-SU = AISI 904L(A)	SU
-XS = SAF2205 (A)	XS
Prozessanschluss	
-A = ANSI Flansch 150 psi	-A
-D = DIN Flansch PN40	-D
-J = JIS Flansch 10K	-J
Rohrdurchmesser	
05 = 15 mm (1/2 inch)	05
10 = 25 mm (1 inch)	10
15 = 40 mm (1 1/2 inch)	15
Reinigungsdüse-Anschluss	
-NC = Reinigungsdüseanschluss	-NC
Reinigungsdüsen	
-SN = Dampfdüse (A)	-SN
-WN = Wasserdüse (A)	-WN
-WP = Hochdruckwasserdüse (A)	-WP
-PG = Blindstopfen für Düsenanschluss (A)	-PG

(A) Gewinde G 1/4 inch innen

Rohrdurchflusszelle, Modellkodierung

MODELL UND BESCHREIBUNG	MODELL
PFC = Rohrdurchflusszelle	PFC
Sensoranschluss -K = Sandvik L Klemme, 76,1 (Einbaulänge 12 mm)	-К
Durchflusszelle-Werkstoff -SS = AISI 316 L andere Materialien auf Anfrage	SS
Prozessanschluss -A = ANSI Flansch 150 psi -D = DIN Flansch PN40 -J = JIS Flansch 10K	-A -D -J
Rohrdurchmesser 05 = 15 mm (1/2 inch) 10 = 25 mm (1 inch) 15 = 40 mm (1 1/2 inch)	05 10 15
Reinigungsdüse-Anschluss -NC = Reinigungsdüseanschluss	-NC
Reinigungsdüsen -SN = Dampfdüse (A) -WP = Hochdruckwasserdüse (A)	-SN -WP

⁽A) Gewinde G 1/4 inch innen

9.5.2 PR-23-GC Spezifikationen

Allgemeine Spezifikationen

Brechungsindexbereich: Gesamter Bereich n_D1,3200–1,5300 (entspricht

0-100 Gew. %), Saphir-Prisma

Genauigkeit: Brechungsindex $n_D \pm 0,0002$ (entspricht nor-

malerweise ± 0,1 Gew. %)

Reproduzierbarkeit und Stabilität entsprechen

der Genauigkeit

Ansprechgeschwindigkeit: 1 s ungedämpft, Dämpfungszeit wählbar bis zu

5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex- über den gesam-

ten Bereich von n_D 1,3200–1,5300

CORE-Optik: Keine mechanischen Einstellungen (US Patent

No. US6067151)

Digitale Messung: 3648 pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge, Natri-

umlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mitzertifizierten Brechungsindex-Flüssigkeiten

und gemäß von Vaisala dokumentiertem Ver-

fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)

SENSOR PR-23-GC:

Prozessanschluss Sandvik L Klammer 76.1 mm (2.5 inch) für Rohr-(an äußeren Rohrbogen): leitung 2.5 inch und größer; mit Reduzierring

leitung 2.5 inch und größer; mit Reduzierring PR-9283 auch für 2 inch Leitung

Wafer flow cell WFC Anschluss

(in gerader Rohrleitung):

Pipe flow cell PFC Anschluss

(in gerader Rohrleitung)

über "Wafer flow cell" WFC für Leitungsgröße 15 mm -(0.5 inch), 25 mm (1 inch) und 40 mm (1,5 inch); "Wafer flow cell" Körper montiert

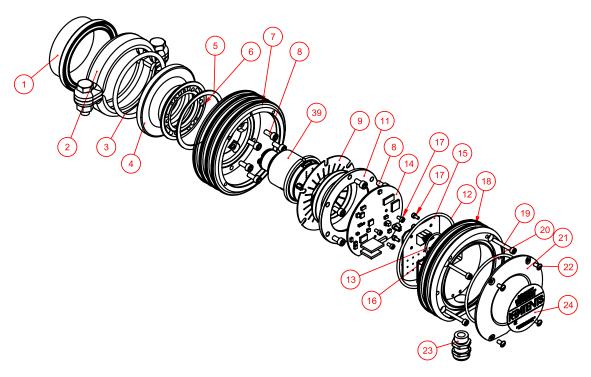
zwischen ANSI 150 psi, DIN PN 25 or JIS Flansch über "Pipe flow cell" PFC für Leitungsgröße 15 mm (0.5 inch), 25 mm (1 inch) und 40 mm (1,5

inch); Pipe flow Prozess Anschluss ANSI 150 psi, DIN PN 25 or JIS Flansch

Prozessdruck: bis 15 bar (200 psi) bei 20 °C (70 °F)

Prozesstemperatur: -40 °C-+130 °C (-40 °F-+266 °F)

Prozessberührte Teile, Standard: AISI 316L Edelstahl, Saphir-Prisma, Prismadich-


tungen PTFE

Prozessberührte Teile, Option: AISI 904L Edelstahl, Alloy 20, Alloy C-276, Nickel

200, Titanium ASTM B348 or SAF 2205

Sensor-Schutzklasse: IP67, Nema 4X Sensorgewicht: 2,0 kg (4,4 lbs)

9.5.3 PR-23-GC Teileliste

Art.	Stck	Teile-Nr.	Beschreibung				
1	1	PR-9280	Sandvik Anschweißstutzen 76.1				
1	1	PR-9283	Sandvik 76.1 Reduzierring				
2	1	PR-9282	Sandvik Klammer FCLC-76.1				
3	1	PR-9281	Sandvik O-Ring FCLG-T-76.1 Teflon®				
3	1	PR-9291	Sandvik O-Ring FCLG-V-76.1 Viton				
4	1	PR-9284	PR-23/33-GC Kopf				
5	1	PR-10048	68x3 O-Ring				
6	1		Ausrichtungsstift				
7	1	PR-10005-SC	PR-23 Basiselement		Carlo	Teile-Nr.	Descharibuse
8	6		Schraube M5x12	Art.	Stck.	ielie-Nr.	Beschreibung
	6		Distanzstück M5	16	1	PR-9108	Trockner für PR-23
9	1	PR-9011	Wärmeleiter	17	8		Schraube M3x6 DIN 912 A2
				18	1	PR-10000-SC	PR-23 Abdeckung
*	1	PR-9010	Tellerfeder-Satz	19	4		Schraube M4x30 DIN 912 A4
10	2		Tellerfeder	20	1	PR-10002	O-Ring-Dichtung 82x3
11	1		Tellerfederhalter	21	1	PR-10047-SC	PR-23 Endplatte mit Typenschild und Schrauben
12	1	PR-10031	O-Ring-Dichtung 89.5 x 3	22	4		Schraube M4x8 DIN 964 A4
13	1	PR-10032	O-Ring-Dichtung 24 x 2	23	1		Kabeldurchführung M16x1.5
14	1	PR-10103	Sensor Prozessorkarte				
15	1	PR-10300	Busabschlusskarte	39	1	PR-10036	PR-23 Kompaktsensor CORE-Modul

9.5.4 PR-23-GC Montagehinweise

Das Compact-Refraktometer wird entweder mit einer Sandvik-Kupplung in einem Rohrbogen befestigt, oder in einem geraden Rohr über eine Wafer-Durchflusszelle oder eine Rohrdurchflusszelle. Beide Montagearten für die Durchflusszellen sorgen für optimale Flussgeschwindigkeiten auf der Messfläche und schaffen so einen guten Selbstreinigungseffekt. Die Wafer-Durchflusszelle verfügt zudem über ein optionales automatisches Reinigungssystem.

In einem Rohr mit mindestens 2,5" Durchmesser wird der Sensor mit Hilfe einer Sandvik-Kupplung in einem Rohrbogen montiert. In einem 2"-Rohr wird der Sensor in einem Rohrbogen über der Reduzierhülse PR-9283 montiert. In Rohren mit 0,5", 1" und 1,5" werden Durchflusszellen in einem geraden Rohr installiert. Die flanschfreie Wafer-Durchflusszelle ist eine kompakte Alternative zu herkömmlichen Durchflusszellen. Der Wafer bezieht sich auf einen Durchflusszellenkörper, der zwischen DIN-, ANSI- oder JIS-Rohrflanschen mit Schrauben und Muttern installiert wird. Die Wafer-Durchflusszelle ist ein einteiliger Körper ohne Schweißnähte. Eine Rohrdurchflusszelle ist auch für die 0,5- und 1-Zoll-Rohre erhältlich.

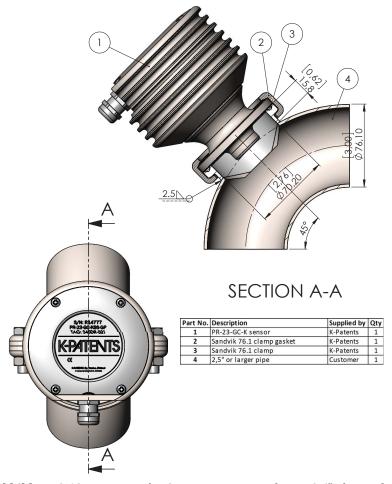
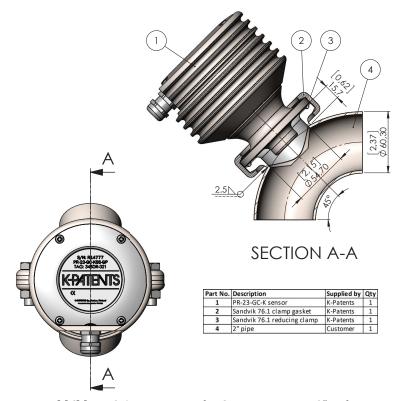
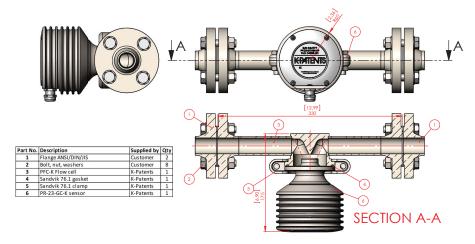
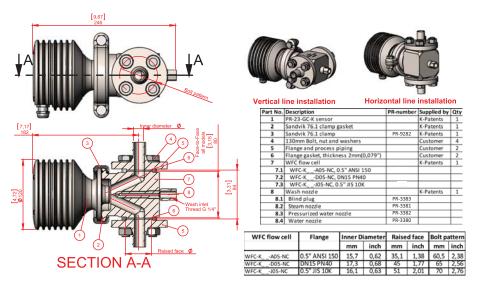
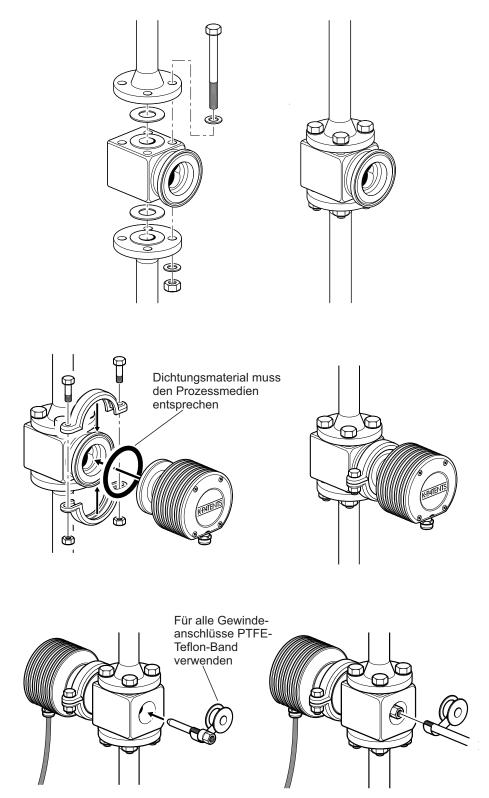
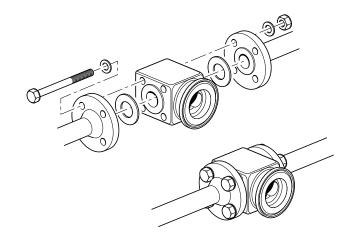
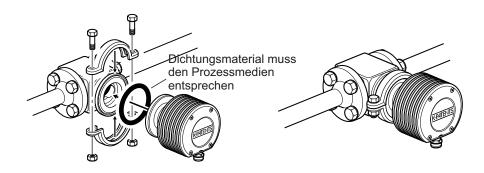




Abbildung 9.13 Montage des Sensors in einem Rohr mit 2,5"oder größer

Abbildung 9.14 Montage des Sensors in einem 2"-Rohr

Abbildung 9.15 Montage des Sensors mit einer PFC-Durchflusszelle

9 Sensor-Spezifikationen 105

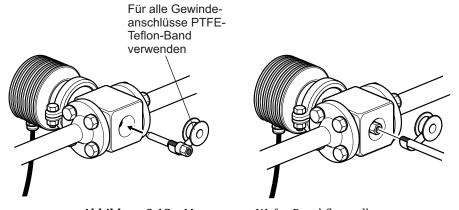

Abbildung 9.16 Montage des Sensors mit einer WFC-Durchflusszelle

Abbildung 9.17 Montage von Wafer-Durchflusszelle und Sensor in einem vertikalen Rohr

Abbildung 9.18 Montage von Wafer-Durchflusszelle und Sensor in einem horizontalen Rohr

9.6 Sonden-Prozessrefraktometer PR-23-GP

Das Vaisala K-PATENTS[®] Sonden-Prozessrefraktometer PR-23-GP ist ein Modell für verschiedene Anwendungen in der Prozeßindustrie wie z.B. bei Standard-Chemikalien, Textilfaserherstellung, Kunststoffherstellung, Salzlösungen und Laugen. Es wird normalerweise in großen Rohren und Behältern installiert.

9.6.1 PR-23-GP Sensor, Modellkodierung

MODELL UND BESCHREIBUNG	MODEL
PR-23 = Sensor	PR-23
Sensormodell	
-G = Generell	-G
Sensortyp	
P = Sondentyp für Behälter und grosse Rohrleitungen	Р
Brechungsindexbreiche	
-62 = n _p 1,320-1,530 (0-100 Brix) Spinell-Prisma	-62
$-73 = n_0 1,320 - 1,530 (0 - 100 Brix) Saphir-Prisma$	-73
$-74 = n_0 \cdot 1,260 - 1,470$, Saphir-Prisma	-74
$-82 = n_0 1,410-1,620, YAG-Prisma$	-82
$-92 = n_h 1,520-1,730, GGG-Prisma$	-92
Prozessanschluss	
-A = ANSI-Flansch 150 lbs, 3", Einbaulänge 130 mm	-A
-D = DIN- Flansch 2656, PN25 DN80, Einbaulänge 130 mm	-D
-DA = DIN- Flansch 2656, PN25 DN100, Einbaulänge 130 mm	-DA
-J = JIS- Flansch 10k 80A, Einbaulänge 130 mm	-J
L = Sandvik L Klemme, 88 mm, Einbaulänge 130 mm	-L
-M = ANSI- Flansch 300 lbs, 3 inch, Einbaulänge 130 mm	-M
O = ANSI- Flansch 150 lbs, 4 inch, Einbaulänge 130 mm	-L
U =ANSI- Flansch 300 lbs, 4 inch, Einbaulänge 130 mm	-U
-JA = JIS- Flansch 10k 100Å, Einbaulänge 130 mm	-JA
Sensormaterial (medienberührend)	
SS = AISI 316 L	SS
RS = Edelstahl AISI 304 L	RS
HA = Alloy 20	HA
HC = Alloy C / ASTM C276	HC
NI = Nickel 200	NI
TI = Titanium ASTM B348 GR 2	TI
Elektrische Schutzklasse	
-GP = Sicherer Bereich	-GP
-AX = ATEX zertifiziert EX II 3 G Eex nA II T4 (bis Zone 2)	-AX
-FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T_{amb} -20 +45°C)	-FM
-CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)	-CS
-IA = ATEX and IECEx zertifiziert Ex II 1 G, Ex ia IIC T4 Ga (bis Zone 0) (T _{amb} -20 +65°C) (A)	-IA
-IF = = FM-zertifiziert nach US-amerikanischen und kanadischen Standards Klasse I, Div.1, Gruppen A, B, C, D T4 (T _{amb} -20 +45°C) (A)	-IF
Sensorgehäuse	
AA = Eloxiertes Aluminium	-AA
-SC = Edelstahl AISI 316	-SC
Reinigungsdüsen	
-SN = Integrierte Dampfdüse	-SN
-WN = Integrierte Wasserdüse	-WN
-WP = Integrierte Hochdruckwasserdüse	-WP
-NC = vorbereitet für Düsenmontage	-NC
-YC = ohne Vorbereitung für Düsenmontage	-YC
Option	
VD = Vertikale Grenzlinien Abbild Detektion (z.B. Zucker Vakuumkocher)	-VD

(A) Nur mit STR-Auswerteelektronik und IS-Isolator erhältlich

Beispiel: Sensor: PR-23-GP-62-LSS-GP-AA-YC

9.6.2 PR-23-GP Spezifikationen

Allgemeine Spezifikationen

Brechungsindexbereich: Gesamter Bereich n_D1,3200–1,5300

(entspricht heißem Wasser - 100 Brix)

Genauigkeit: Brechungsindex n_D± 0,0002 (entspricht norma-

lerweise ± 0,1 Gew. %)

Reproduzierbarkeit und Stabilität entsprechen der Genauigkeit

Ansprechgeschwindigkeit: 1 s ungedämpft, Dämpfungszeit wählbar

bis zu 5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von n_D1,3200-1,5300

CORE-Optik: Keine mechanischen Einstellungen

(US Patent No. US6067151)

Digitale Messung: 3648 Pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge,

Natriumlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten

und gemäß von Vaisala dokumentiertem Ver-

fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)

SENSOR PR-23-GP: Sondensensor für große Rohrleitungen und

Behälter

Prozessanschluss: Flansche: ANSI 3" 150 lbs oder DIN 80 P25 oder

JIS 80 A 10k oder Sandvik L-Klemme 88 mm

Prozessdruck: Flanschanschlüsse bis zu 25 bar (350 psi)

Prozesstemperatur: $-20 \,^{\circ}\text{C} - +150 \,^{\circ}\text{C} \, (-4 \,^{\circ}\text{F} - +302 \,^{\circ}\text{F})$ Prozessberührte Teile, Standard: AISI 316L Edelstahl, Prisma Spinel,

Prismadichtungen PTFE (Teflon®)

Sensor-Schutzklasse: IP67, Nema 4X

Sensorgewicht: Sandvik-Klemme 3,0 kg (6,6 lbs),

Flansch ANSI/DIN/JIS 8,7 kg (19,2 lbs)

9.6.3 PR-23-GP Wärmeabdeckung

Die thermische Abdeckung verhindert den Wärmefluss zwischen Prozess und Umgebung. Es hilft dabei, die Sensorspitze und die Prismenoberfläche auf Prozesstemperatur zu halten und die Belagsbildung auf dem Prisma zu reduzieren. Verwenden Sie eine thermische Abdeckung, wenn der Temperaturunterschied zwischen dem Prozess und der Umgebung mehr als 30 °C beträgt oder wenn die Prozesstemperatur über 60 °C liegt.

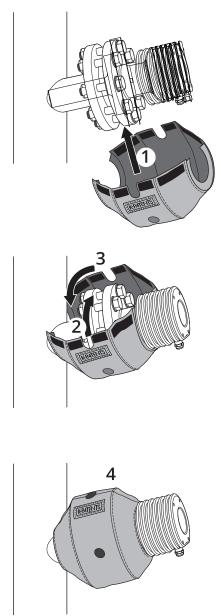
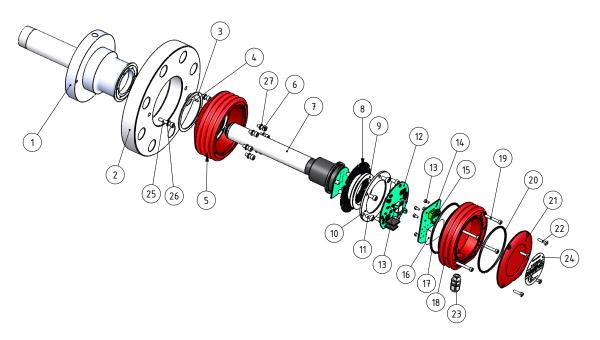



Abbildung 9.19 Montage der Wärmeabdeckung am PR-23-GP

9.6.4 PR-23-GP Teileliste

Art.	Stck	Teile-Nr.	Beschreibung				
1	1	PR-10009	PR-23-GP-L-Kopf				
1	1	PR-10010	PR-23-GP-D-Kopf				
1	1	PR-10011	PR-23-GP-D-NC-Kopf	Art.	Stck	Teile-Nr.	Beschreibung
2	4		ANGLOWASO Has Flavoria	12	1	PR-10103	Sensor Prozessorkarte
2	1		ANSI 3" 150 lbs Flansch	13	8		Schraube M3x6 DIN 912 A2
2	1		DIN 80 PN 25 Flansch	14	1	PR-10300	Busabschlusskarte
2	1		JIS 80A 10k Flansch	15	1	PR-10032	O-Ring-Dichtung 24x2
				16	1	PR-9108	Trockner für PR-23
3	1		68x3 O-Ring-Dichtung	17	1	PR-10031	O-Ring-Dichtung 89.5x3
4	1		Zentrierstift	18.1	1	PR-10000	PR-23 Abdeckung
5.1	1	PR-10005	PR-23 Basiselement	18.2	1	PR-10000-SC	PR-23 Abdeckung SS
5.2	1	PR-10005-SC	PR-23 Basiselement SS	18.3	1	PR-10000-EC	PR-23 Abdeckung EC
5.3	1	PR-10005-EC	PR-23 Basiselement EC	19	4		Schraube M4x30 DIN 912 A4
6	6		Schraube M5x10 DIN 912 A2	20	1	PR-10002	O-Ring-Dichtung 82x3
	6		Verriegelungsabstandhalter M5	21	1		PR-23-G Endplatte mit Typenschild
7	1	PR-10022	PR-23-P CORE	22	4		Schraube M4x8 DIN 964 A4
8	1	PR-9011	Wärmeleiter	23	1		Kabeldurchführung M16x1.5
*	1	PR-9010	Tellerfeder-Satz	24	1		Typenschild-Aufkleber
9	2		Tellerfeder	25	2		Schraube M6x30 A4 DIN912
10	1		Tellerfederhalter	26	2		Unterlegscheibe M6 A4
11	6		Schraube M5x10 DIN 912 A2	27	6		Sicherungsscheibe M6
				2,	U		Sicher and Section of Miles

9.7 Process refractometer PR-23-RP

Das Vaisala K-PATENTS[®] Process Refractometer PR-23-RP ist ein Raffineriemodell für anspruchsvolle Aufgaben, das entwickelt wurde, um die einzigartigen Anforderungen der Raffinerie- und Mineralölindustrie zu unterstützen. Typische Anwendungen sind Messungen von ungenauen Flüssigkeitskonzentrationen, z.B. Säure in Alkylierung, Glykol oder Aminen in der Gasverarbeitung und Multiprodukt-Schnittstellen (Rohöl, Heizöl, Diesel) in Übertragungsvorgängen. Die wichtigsten physikalischen Eigenschaften wurden in Übereinstimmung mit ASME VIII Div1 und Div2 entwickelt.

Das PR-23-RP wird mit benutzerspezifischen Zusatztests und Dokumenten geliefert. Die folgenden Elemente können spezifiziert und bestellt werden: Metallurgie- und Werkstoffhärte-Zertifizierung (z.B. Einhaltung der Norm NACE MR0103 oder NACE MR0175/ISO 15156), API-empfohlene Tests und Schweißdokumente (z.B. WPS, PQR, WQR, NDE, Durchstrahlungsprüfung und hydrostatischer Shell-Test), Werkstoffzeugnis und Positive Material Identification (PMI)-Test. Ein Factory Acceptance Test (FAT), Site Acceptance Test (SAT) und kundenspezifische Zeichnungen mit kundenspezifischen Informationen sind auf Anfrage erhältlich.

9.7.1 Sensor, Modellkodierung

MODELL UND BESCHREIBUNG	MODELL
PR-23 = Sensor	PR-23
Sensormodell -R = Raffinerie	-R
Sensortyp P = Sondentyp, medienberührend aus einem Stück, keine Schweißnähte	Р
Brechungsindexbreiche $-73 = n_0 1,320-1,530 (0-100 Brix)$	-73
Prozessanschluss -M20 = ANSI-Flansch 300 lbs, 2 inch, Eintauchtiefe 130 mm	-M20
-J20 = JIS-Flansch 10k 50A, Eintauchtiefe 130 mm	-J20
Sensormaterial (medienberührend) -SS = AISI 316 L -HA = Alloy 20 -HC = Alloy C / ASTM C276	-SS -HA -HC
Elektrische Schutzklasse -GP = Sicherer Bereich -AX = ATEX zertifiziert EX II 3 G Eex nA II T4 (bis Zone 2) -IA = ATEX and IECEx zertifiziert EX II 1 G Ex ia II C T4 Ga (bis Zone 0) -FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T _{amb} -20 +45°C) -IF = FM-zertifiziert nach US-amerikanischen und kanadischen Standards Klasse I, Div.1, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C) -CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)	-GP -AX -IA -FM -IF -CS
Sensorgehäuse -SC = Edelstahl	-SC

Beispiel: Sensor: PR-23-RP-73-M20-SS-AX-SC

9.7.2 PR-23-RP Spezifikationen

Allgemeine Spezifikationen

Brechungsindexbereich: Gesamter Bereich n_D1,3200–1,5300 (entspricht

heißem Wasser - 100 Brix)

Genauigkeit: Brechungsindex n_D± 0,0002 (entspricht norma-

lerweise ± 0,1 Gew. %)

Reproduzierbarkeit und Stabilität entsprechen

der Genauigkeit

Ansprechgeschwindigkeit: 1 s ungedämpft, Dämpfungszeit wählbar bis zu

5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von n_D1,3200-1,5300

CORE-Optik: Keine mechanischen Einstellungen (US Patent

No. US6067151)

Digitale Messung: 3648 pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge, Natri-

umlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten

und gemäß von Vaisala dokumentiertem Ver-

fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F), min. -20 °C (-4 °F)

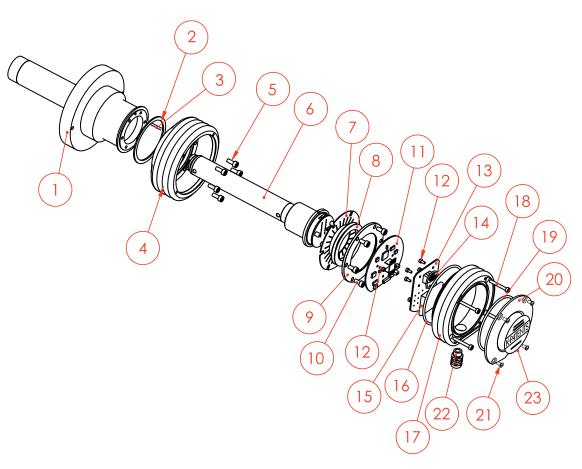
Messumformer: max. 50 °C (122 °F), min. 0 °C

(32 °F)

SENSOR PR-23-RP: Sondensensor, medienberührend einteilig, naht-

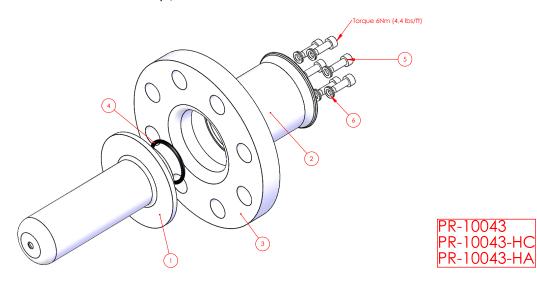
los ohne Schweißnähte

Prozessanschluss: Flansche: ANSI 2" 300 lbs Prozessdruck: bis zu 25 bar (350 psi)


Prozesstemperatur: $-40 \,^{\circ}\text{C} - +150 \,^{\circ}\text{C} \, (-40 \,^{\circ}\text{F} - +302 \,^{\circ}\text{F})$

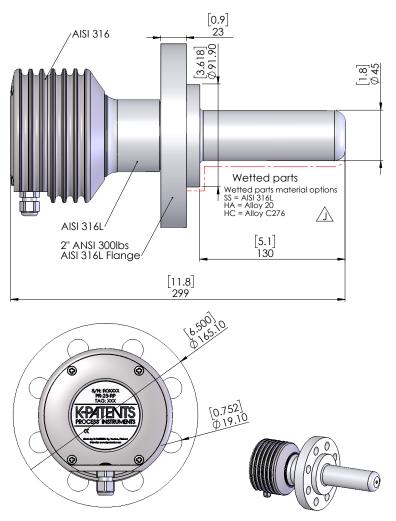
Prozessberührte Teile, Standard: AISI 316L Edelstahl, Alloy 20 oder Alloy C276;

Saphir-Prisma, Prisma Dichtung PTFE


Sensor-Schutzklasse: IP67, Nema 4X Sensorgewicht: 7.89 kg (17.4 lbs)

9.7.3 PR-23-RP Teileliste

Art.	Stck	Teile-Nr.	Beschreibung				
1.1	1	PR-10043	PR-23-RP-SS Sensorkopf				
1.2	1	PR-10043-HC	PR-23-RP-SS Alloy® C 276	Art.	Stck	Teile-Nr.	Beschreibung
1.3	1	PR-10043-HA	PR-23-RP-SS Alloy® 20 head	11	1	PR-10103	Sensor Processor Platine
2	1	PR-10048	O-ring 68,0 x 3 FPM (Viton) schwarz	12	8	111 10105	Schraube M3x6 DIN 912 A2
3	1		Ausrichtungsstift	13	1	PR-10300	Bus terminator Platine
4	1	PR-10005-SC	PR-23 basis SS	14	1	PR-10032	O-ring Dichtung 24x2
5	6		Schraube M5x10 DIN 912 A2	15	1	PR-9108	Trockner für PR-23
6	1	PR-10036	H73 Core Optik	16	1	PR-10031	O-ring Dichtung 89.5x3
7	1	PR-9011	Wärmeableiter	17	1	PR-10000-SC	PR-23 Gehäuse SS
•	1	PR-9010	Tellerfeder Satz	18	4		Schraube M4x30 DIN 912 A4
8	2		Tellerfeder	19	1	PR-10002	O-ring Dichtung 82x3
9	1		Tellerfeder Halter	20	1		PR-23 Endplatte mit Typenschild
10	6		Schraube M5x13 DIN 912 A2	21	4		Schraube M4x8 DIN 964 A4
	6		Abstandshalter M5	22	1		Kabelverschraubung M16x1.5


9.7.4 PR-23-RP Kopf, Teileliste

Art.	Stck	Teile-Nr.	Beschreibung	Art.	Stck	Teile-Nr.	Beschreibung
1.1	1		PR-23-RP Kopf	3	1		2" ANSI 300 Flansch
1.2	1		PR-23-RP Kopf Alloy C	4	1	PR-10049	O-Ring 50x3 FPM
1.3	1		PR-23-RP Kopf Alloy 20	5	6		M6x16 DIN912 A4
2	1		PR-23-RP äußerer Sensorkopf	6	6		M6 Sicherungsscheibe

116 PR-23 Betriebsanleitung

9.7.5 PR-23-RP Abmessungen

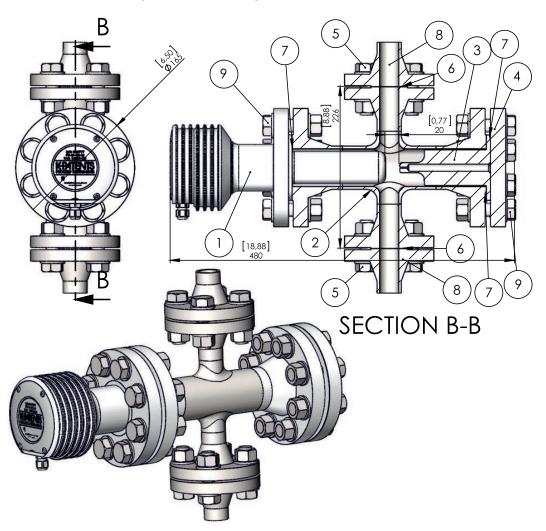
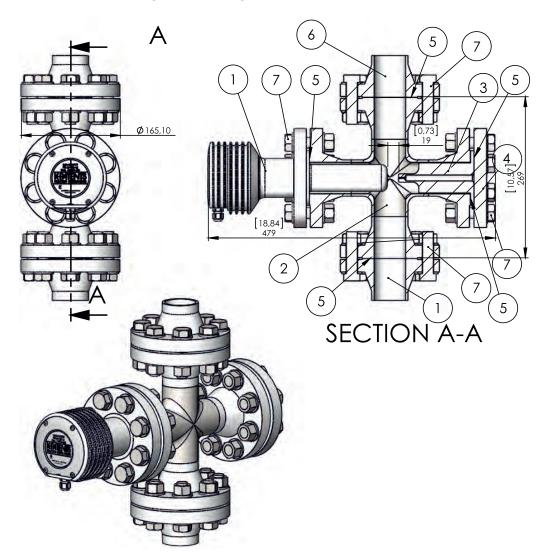


Abbildung 9.20 PR-23-RP-73-M20

9.7.6 PR-23-RP Montagehinweise

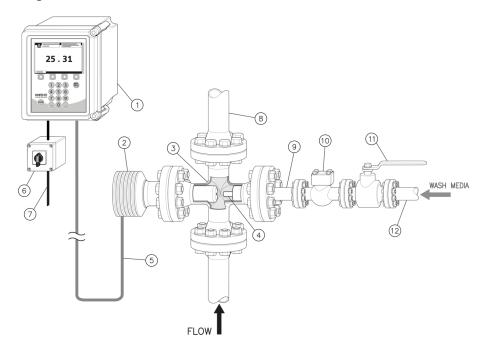
Der Refraktometersensor wird entweder direkt durch Schweißen eines Befestigungsflansches an Rohre oder Behälter von 2 Zoll oder größer, oder über eine Querdurchflusszelle von 1 Zoll, 2 Zoll oder 3 Zoll in den Prozess installiert. Durch den robusten, innovativen nicht-geschweißten Sensorkörper und selbst reinigende oder optionale Reinigungssysteme funktioniert das PR-23-RP unter rauen Raffineriebedingungen genau und zuverlässig. Es ist eine Zertifizierung für eigensichere und explosionsgefährdete Bereiche für Gefahrenbereich verfügbar.


PR-23-RP Montage in CFC 1" -Leitung

Art.	Beschreibung	Geliefert von	Stck	Art.	Beschreibung	Geliefert von	Stck
1	Sensor PR-23-RP-73-M20	K-Patents	1	5	Schrauben Unterlegscheiben und Muttern für 1"Flansch	Kunde	8
2	CFC-RP-M20-M10-NC-PG/SN/WP	K-Patents	1	6	1" Flanschdichtung	Kunde	2
3	2"ANSI 300 Reinigungsdüse	K-Patents	1	7	2" Flanschdichtung	Kunde	3
4	1"ANSI 300 Blindflansch	K-Patents	1	8	1" ANSI 300 Anschweißflansch	Kunde	2
				9	Schrauben Unterlegscheiben und Muttern für 2" Flansch	Kunde	16

Abbildung 9.21 CFC-RP-M20-SS/HC/HA-M10-NC-PG/SN/WP Durchflusszelle

PR-23-RP Montage in 2" -Leitung



Art.	Beschreibung	Geliefert von	Stck	Art.	Beschreibung	Geliefert von	Stck.
1	Sensor PR-23-RP-73-M20	K-Patents	1	5	2"Flanschdichtung	Kunde	5
2	CFC-23-RP-M20-M20-NC-PG/SN/WP	K-Patents	1	6	2"ANSI 300 Anschweißflansch	Kunde	2
3	2" ANSI 300 Reinigungsdüse	K-Patents	1	7	Schrauben Unterlegscheiben und Muttern für 2" Flansch	Kunde	32
4	1" ANSI 300 Blindflansch	K-Patents	1		ů .		

Abbildung 9.22 CFC-RP-M20-SS/HC/HA-M20-NC-PG/SN/WP Durchflusszelle

9.7.7 PR-23-RP Prismenreinigungssystem

Für das PR-23-RP ist ein Prismenreinigungssystem erhältlich. Dazu ist die Verwendung einer CFCRP-M20 Durchflusszelle in Kombination mit einer 2" ANSI 300 CFC -Reinigungsdüse erforderlich. Diese beiden Komponenten sind über Vaisala erhältlich. Alle weiteren Komponenten, die speziell für die Installation des Reinigungssystems erforderlich sind, werden unabhängig vom Kunden beschafft. Dazu gehören ein 2" ANSI 300 zu ½" ANSI 300 Adapter, ½" ANSI Rückschlagventil, ½" ANSI 300 Absperrventil, ½" -Versorgungsleitungen für die Reinigungsmedien. Siehe Abbildung 9.23

Art.	Beschreibung	Geliefert von	Stck	Art.	Beschreibung	Geliefert von	Stck
1	Messumformer DTR	K-Patents	1	7	Spannungsversorgung 100-240 VAC/50-60Hz	Kunde	1
2	Sensor PR-23-RP	K-Patents	1	8	Prozessleitung	Kunde	1
3	CFC-RP-M20 Durchflusszelle	K-Patents	1	9	2" ANSI 300 auf 1/2"ANSI 300 Adapter	Kunde	1
4	2" ANSI 300 CFC Reinigungsdüse	K-Patents	1	10	Rückschlagventil ANSI 1/2"	Kunde	1
5	Kabel zwischen DTR und Sensor	K-P/Kunde	1	11	1/2" ANSI 300 Ventil	Kunde	1
6	Hauptschalter PR-10900	Kunde/K-P	1	12	Reinigungszuleitung 1/2"	Kunde	1

Abbildung 9.23 Ein Prismenreinigungssystem für PR-23-RP

PR-23 Betriebsanleitung

9.8 Teflon-Body Refraktometer PR-23-M/MS

 $\label{eq:continuous_problem} Das\,Vaisala\,K\text{-PATENTS}^{\circledR}\,Teflon\text{-Body}\,Refraktometer$

PR-23-M/MS ist für den Einsatz in chemisch aggressiven Lösungen und ultrareinen feinen chemischen Prozessen konzipiert. PR-23-M ist ein Allzweckmodell, PR-23-MS ist speziell für die Halbleiterindustrie vorgesehen. Der Sensor verfügt über eine integrierte Durchflusszelle, die verhindert, dass metallische und andere leicht korrodierende Teile in Kontakt mit der Prozessflüssigkeit kommen. Alle medienberührten Teile bestehen aus nicht-metallischen Werkstoffen, entweder PTFE (Teflon®) oder PVDF (Kynar®), wodurch der PR-23-M/MS-Sensor sehr widerstandsfähig gegenüber Korrosion ist.

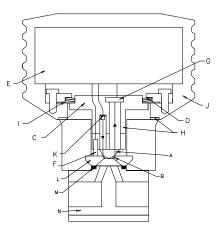


Abbildung 9.24 PR-23-M Sensor

Die Durchflusszelle (N) und die Saphirplatte (L) sind mit vier Schrauben am Edelstahlgehäuse des Sensors befestigt. Die Durchflusszelle ist mit einem O-Ring aus Kalrez (M) abgedichtet.

Eine spezielle Leckage-Kammer hinter dem O-Ring (M) verhindert, dass im Falle einer Undichtigkeit Flüssigkeit aus der Durchflusszelle irgendwelche Metalloberflächen erreichen kann. Diese Kammer ist mit einer Kontrollöffnung verbunden, welche über eine 1/8 Inch Gewindebohrung verfügt.

9.8.1 PR-23-M Sensor, Modellkodierung

MODELL
PR-23
-M
73
74
-GP
-AX
-FM
-CS
-IA
-IF
-SC

(A) Nur mit STR-Auswerteelektronik und IS-Isolator erhältlich

Beispiel: Sensor: PR-23-M73-GP-SC

DURCHFLUSSZELLE FÜR SENSOR PR-23-M	MODELL
Prozessanschluss FR = Durchflusszelle mit G ½" Gewinde Ein-/Auslass Anschluss (weiblich) FN = Durchflusszelle mit ½" NPT Gewinde Ein-/Auslass Anschluss (weiblich)	FR FN
Rohrdurchmesser -050 = ½" (Durchflussvolumen 2-8 l/min (0.5-2.1 GPM))	-050
Durchflusszelle medienberührendes Material -PV = Kynar (PVDF=Polyvinylidenefluoride) -TF = Teflon (PTFE=Polytetrafluoroethylene)	-PV -TF

Beispiel: Durchflusszelle: FR-050-PV/TF, FN-050-PV/TF

9.8.2 PR-23-M Spezifikationen

Generelle Spezifikationen

Brechungsindex-Messbereich, stan- Gesamter Bereich n_D1,3200-1,5300 (entspricht

heissem Wasser – 100 Gew. %)

dard:

Brechungsindex-Messbereich, optio- Mit Saphir-Prisma n_D1,2600-1,5000

Dicciiui

Genauigkeit:

lerweise ± 0,1 Gew.%)

Reproduzierbarkeit und Stabilität entsprechen

Brechungsindex $n_D \pm 0,0002$ (entspricht norma-

der Genauigkeit

Ansprechzeit: 1 s ungedämpft, Dämpfungszeit wählbar bis zu

5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von n_D 1,3200–1,5300

CORE-Optik: Keine mechanischen Einstellungen (US Patent

No. US6067151)

Digitale Messung: 3648 Pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge, Natri-

umlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten

und gemäss von Vaisala dokumentiertem Ver-

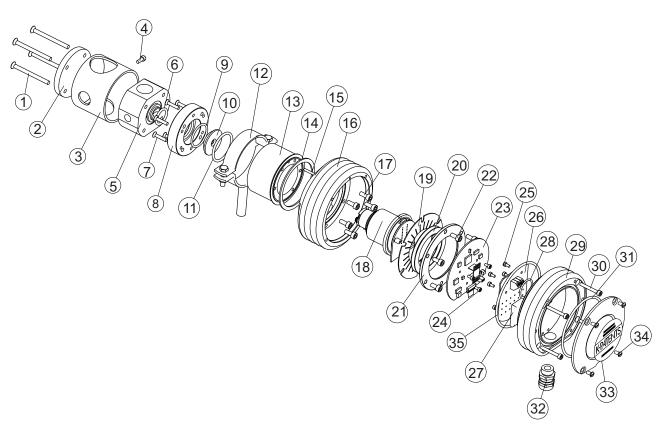
fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)


SENSOR PR-23-M:Teflon-Body Sensor-Modell für aggressive MedienProzessanschluss:Gewinde G 1/2" oder 1/2" NPT InnengewindeMedienberührte Teile, standard:Teflon® (PTFE) oder Kynar® (PVDF), Prisma-

dichtung Teflon®, Prisma Spinel, O-Ring Kal-

rez, Adapter Saphir

Medienberührte Teile, optional Prisma Saphir Sensor-Schutzklasse: IP67, Nema 4X Sensor Gewicht: 5,5 kg (12,1 lbs)

9.8.3 PR-23-M Teileliste

Art	Stck	Teile-Nr.	Beschreibung				
1	4		Schraube DIN 7991 M5x70 A4				
2	1		PR-23-M Endplatte				
3	1	PR-9129	PR-03/23-M Schutzabdeckung	Art.	Stck	Teile-Nr.	Beschreibung
4	1		Schraube DIN 912 M4x10 A4	*	1	PR-9010	Tellerfeder Set
5	1	PR-9120	PR-03/23-M-PV-R05 Durchflusszelle (PVDF)	20	2		Tellerfeder
5	1	PR-9121	PR-03/23-M-TF-R05 Durchflusszelle (PTFE)	21	1		Tellerfederhalter
6	1	PR-9252	O-Ring Dichtung 20.2 x 3 Kalrez 6375UP	22	6		Schraube DIN 912 M5x12 A2
7	6		Schraube M4 x 20 DIN 7991 A4	23	1	PR-10100	Sensor Prozessor-Karte
8	1		PR-03/23-M Kopfring (PVDF)	24	4		Schraube M3x6 DIN 912 A2
9	1	PR-9112	O-Ring Dichtung 30.3 x 2.4 FPM	25	4		Schraube M3x6 DIN 912 A2
10	1	PR-9122	Saphirplatte für PR-03/23-M	26	1	PR-10300	Busabschlusskarte
11	1	PR-9113	O-Ring Dichtung 37.3 x 3 FPM	27	1	PR-9108	Trockner für PR-23
12	1	PR-9100	Sensorstütze	28	1	PR-10032	O-Ring Dichtung 24 x 2
13	1	PR-10101	PR-23-M Kopf	29	1	PR-10000	PR-23 Abdeckung
14	1		Wärmeisolator PTFE (Teflon®)	30	4		Schraube M4x30 DIN 912 A4
15	1		Zentrierstift	31	1	PR-10002	O-Ring Dicthung 82x3
16	1	PR-10005	PR-23 Basiselement	32	1		Kabeldurchführung M16x1.5
17	6		Schraube M5x10 DIN 912 A2	33	1		PR-23-M Endplatte mit Typenschild
18	1	PR-10012	PR-23 Kompakt-Sensor CORE-Modul	34	4		Schraube M4x8 DIN 964 A4
19	1	PR-9011	Wärmeleiter	35	1	PR-10031	O-Ring Dichtung 89.5 x 3

9.8.4 PR-23-MS Sensor, Modellkodierung

MODELL AND BESCHREIBUNG	MODELL PR-23	
PR-23 = Sensor		
Sensormodell		
-MS = Adapter für aggressives Medium, Halbleiterindustrie	-MS	
Brechungsindexbereich		
73 = n _D 1,320−1,530 (0−100 Konz. Gew%) Saphir-Prisma	73	
$74 = n_D 1,260-1,470$ Saphir-Prisma	74	
Elektrische Schutzklasse		
-GP = Sicherer Bereich	-GP	
-AX = ATEX zertifiziert EX II 3 G Eex nA II T4 (bis zu Zone 2)	-AX	
-IA = ATEX und IECEx zertifiziert EX II 1 G Ex ia II C T4 Ga (bis zu Zone 0)	-IA	
Sensorgehäuse		
-EC = Epoxidbeschichteter Edelstahl	-EC	

Beispiel: Sensor: PR-23-MS73-GP-EC

DURCHFLUSSZELLE FÜR SENSOR PR-23-MS				
Prozessanschluss -F2 = Durchflusszelle mit Flare-Fitting	-F2			
-P2 = Durchflusszelle mit Pillar-Fitting				
Rohrdurchmesser 025 = 1/4 inch 050 = 1/2 inch 075 = 3/4 inch 100 = 1 inch	-025 -050 -075 -100			
Durchflusszelle medienberührendes Material -TM = Modified PTFE Ultra-Pure (PTFE=Polytetrafluoroethylene)	-TM			

Durchflusszelle ist mit dem PR-23-MS Sensor integriert

Beispiel: Durchflusszelle: F2-025-TM

9.8.5 PR-23-MS Spezifikationen

Generelle Spezifikationen

 $\label{eq:Brechungsindex-Messbereich, Gesamter Bereich n_D 1,3200-1,5300 (entspricht)} Gesamter Bereich n_D 1,3200-1,5300 (entspricht)$

standard: heissem Wasser – 100 Gew. %) mit Saphir-Prisma

H73

Brechungsindex-Messbereich, Mit Saphir-Prisma H74 n_D 1,2600–1,4700

optional

Genauigkeit: Brechungsindex n_D± 0,0002 (entspricht norma-

lerweise ± 0,1 Gew. %)

Reproduzierbarkeit und Stabilität entsprechen

der Genauigkeit

Ansprechzeit: 1s ungedämpft, Dämpfungszeit wählbar bis zu

5 min

Kalibrierung: Mit'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von $n_{\scriptscriptstyle D}$ 1,3200–1,5300

CORE-Optik: Keine mechanischen Einstellungen (US Patent

No. US6067151)

Digitale Messung: 3648 pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge, Natri-

umlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten

und gemäss von Vaisala dokumentiertem Ver-

fahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)

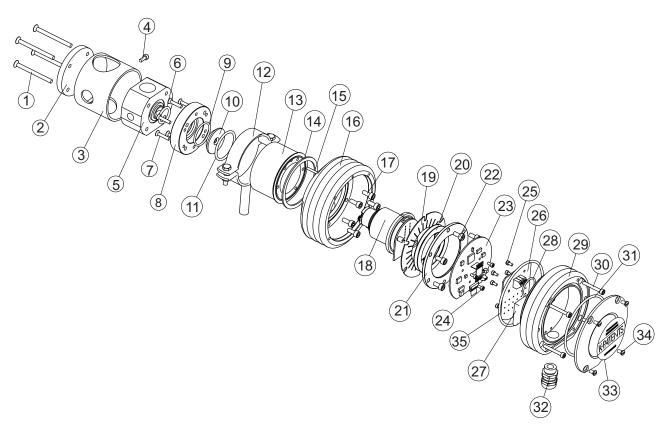
SENSOR PR-23-MS: Teflonkörper-Sensormodel für aggressives Medium

Sensor-Schutzklasse: IP67, Nema 4X Sensor Gewicht: 5,0 kg (12,1 lbs)

DURCHFLUSSZELLE FÜR PR-23-MS

Prozessanschluss: Gewinde G 1/2" oder 1/2" NPT (weiblich)

Prozessdruck: max. 10 bar (145 psi) Prozesstemperatur: max. 130 °C (266 °F)

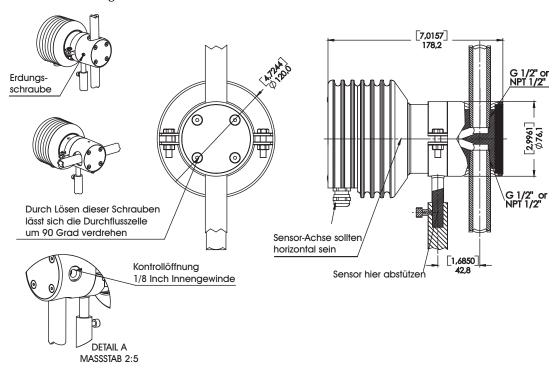

Medienberührte Teile, standard: Teflon® (PTFE) oder Kynar® (PVDF), Prismen-

dichtung MTF (Modified Teflon®), Prisma Spi-

nel, O-Ring Kalrez, Adapter Saphir

Medienberührte Teile, optional: Prisma Saphir

9.8.6 PR-23-MS Teileliste



Item	Pcs.	Part No.	Description				
1	4		Schraube DIN 7991 M5x70 A4				
2	1		PR-23-MS Endplatte				
3	1	PR-9129-EC	PR-23-MS Schutzabdeckung		_		
4	1		Schraube DIN 912 M4x10 A4	Item	Pcs.	Part No.	Description
5	1	PR-9120	PR-03/23-M-PV-R05 Durchflusszelle (PVDF)	*	1	PR-9010	Tellerfeder-Satz
5	1	PR-9121	PR-03/23-M-TF-R05 Durchflusszelle (PTFE)	20	2		Tellerfeder
6	1	PR-9252	O-Ring 20.2 x 3 Kalrez 6375UP	21	1		Tellerfeder-Satz
7	6		Schraube M4 x 20 DIN 7991 A4	22	6		Schraube DIN 912 M5x12 A2
8	1		PR-03/23-M Stirnring (PVDF)	23	1	PR-10103	Sensor-Prozessorkarte
9	1	PR-9112	O-Ring-Dichtung 30.3 x 2.4 FPM	24	4		Schraube M3x6 DIN 912 A2
10	1	PR-9126	Saphirplatte für PR-03/23-M	25	4		Schraube M3x6 DIN 912 A2
11	1	PR-9113	O-Ring-Dichtung 37.3 x 3 FPM	26	1	PR-10300	Busabschlusskarte
12	1	PR-9100-EC	MS Sensorhalterung	27	1	PR-9108	Trockner für PR-23
13	1	PR-11101-EC	PR-23-MS Modul	28	1	PR-10032	O-Ring-Dichtung 24 x 2
14	1	PR-10048	68x3 O-Ring	29	1	PR-10000	PR-23 Abdeckung
15	1		Zentrierstift	29	1	PR-10000-EC	PR-23-EC Abdeckung
16	1	PR-10005	PR-23 Basiselement	30	4		Schraube M4x30 DIN 912 A4
16	1	PR-10005-EC	PR-23-EC Basiselement	31	1	PR-10002	O-Ring-Dichtung 82x3
17	6		Schraube M5x12 DIN 912 A2	32	1		Kabeldurchführung M16x1.5
	6		Verriegelungsabstandhalter M5	33	1		PR-23-M Endplatte mit Typenschild
18	1	PR-10036	PR-23 Kompaktsensor CORE-Modul	34	4		Schraube M4x8 DIN 964 A4
19	1	PR-9011	Wärmeleiter	35	1	PR-10031	O-Ring-Dichtung 89.5 x 3

9.8.7 PR-23-M/MS Montagehinweise

Das *Vaisala K-PATENTS*[®] *Teflon-Body Refraktometer PR-23-M/MS* wird an die Prozessleitung mittels eines G 1/2 Inch Innengewindes oder einer 1/2 Inch NPT Verschraubung angeschlossen, siehe Abbildung 9.25 unten.

Wichtig: Verwenden beim Einbau immer die Sensorstütze, damit das Gewicht des Sensors nicht von den Kunststoffrohren getragen werden muss; siehe Abbildung 9.25 zur Montage der Stütze.

Abbildung 9.25 Anschluss mit G 1/2 Inch Innengewinde (mm [in])

Hinweis: Durch Lösen der vier Schrauben, lässt sich die Durchflusszelle des PR-23-M/MS leicht um 90 Grad verdrehen. Danach müssen die Schrauben wieder angezogen werden (siehe Abbildung 9.25 oben).

128 PR-23 Betriebsanleitung

9.9 Saunders-Body-Refraktometer PR-23-W

Das Saunders-Body-Refractometer PR-23-W ist ein Heavy-Duty Messgerät. Es wurde für den Einsatz in aggressiven Chemikalien oder in ultra-reinen Feinchemikalien bei grossen Durchflussmengen und Rohrquerschnitten konzipiert. Das Design und die verwendeten Werkstoffe sind ähnlich dem Prozessrefraktometer PR-23-M. Jedoch lässt es sich mit seinem Ventilkörper in Leitungen mit Querschnitten von 50, 80 oder 100 mm (2 Inch, 3 Inch oder 4 Inch) einbauen.

Der Ventilkörper besteht aus Graphitguss und ist mit einer 3 mm dicken PFA-Schicht (Fluoriertes Ethylen Propylen) oder ETFE-Schicht (Ethylene tetrafluoroethylene) ausgekleidet. Der Gusskörper dient als mechanisch stabiles Gehäuse und die PFA/ETFE-Auskleidung der chemischen Beständigkeit.

Der Sensor selbst entspricht in seinem Aufbau dem des PR-23-M (siehe Abschnitt 9.8). Er ist auf dieselbe Art mit dem Ventilkörper verbunden, nämlich mit einer Saphirplatte und einer O-Ring Dichtung aus Kalrez, um die metallischen Oberflächen vom Prozessmedium zu trennen.

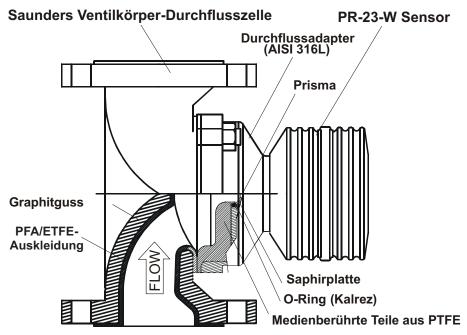


Abbildung 9.26 PR-23-W Saunders-Body Sensor

9.9.1 PR-23-W Sensor, Modellkodierung

MODELL UND BESCHREIBUNG	MODELL
PR-23 = Sensor	PR-23
Sensormodell	
-W = Aggressive Medien "Saunders Ventilkörper Durchflusszelle"	-W
Brechungsindexbreiche	
$73 = n_0 1,320 - 1,530$ Saphir-Prisma	73
$74 = n_0 1,260 - 1,4700$ Saphir-Prisma	74
Sensormaterial (medienberührend)	
-2TF = Teflon® (PTFE=Polytetrafluoroethylene)	-2TF
Sensoranschluss	
4 = Adapter für 4 inch/DN 100 Ventilkörper	4
3 = Adapter für 3 inch/DN 80 Ventilkörper	3
2 = Adapter für 2 inch/DN 50 Ventilkörper	2
Elektrische Schutzklasse	
-GP = Sicherer Bereich	-GP
-AX = ATEX zertifiziert EX II 3 G Eex nA II T4 (bis Zone 2)	-AX
-FM = FM-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T6 (T _{amb} -20 +45°C)	-FM
-CS = CSA-zertifiziert Klasse I, Div. 2, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C)	-CS
-IA = ATEX und IECEx zertifiziert Ex II 1 G, Ex ia IIC T4 Ga (bis Zone 0) (T _{amb} -20 +65°C) (A)	-IA
-IF = FM-zertifiziert nach US-amerikanischen und kanadischen Standards Klasse I, Div.1, Gruppen A, B, C, D, T4 (T _{amb} -20 +45°C) (A)	-IF
Sensorgehäuse	
-SC = Edelstahl	-SC

(A) Nur mit STR-Auswerteelektronik und IS-Isolator erhältlich

Beispiel: Sensor: PR-23-W73-2TF4-GP-SC

SAUNDERS VENTILKÖRPER FÜR SENSOR PR-23-W		
SVB = Saunders Ventilkörper	SVB	
Prozessanschluss		
-A040 = ANSI Flansch 4 inch 150 lbs	-A040	
-A030 = ANSI Flansch 3 inch 150 lbs	-A030	
-A020 = ANSI Flansch 2 inch 150 lbs	-A020	
-D100 = DIN Flansch DN 100 PN 16	-D100	
-D080 = DIN Flansch DN 80 PN 16	-D080	
-D050 = DIN Flansch DN 50 PN 16	-D050	
-J100 = JIS Flansch 10K 100A	-J100	
-J080 = JIS Flansch 10K 80A	-J080	
-J050 = JIS Flansch 10K 50A	-J050	
Ventilkörper Material		
-GC = Kugelgrafitguss	-GC	
Valve body lining material -PFA = PFA (= Fluorinated ethylene propylene)/-ETFE = ETFE (=Ethylene tetrafluoroethylene)	-PFA/-ETFE	

Beispiel: Ventilkörper: SVB-A040-GC-PFA

9.9.2 PR-23-W Spezifikationen

Generelle Spezifikationen

Brechungsindex-Messbereich, Gesamter Bereich n_D 1,3200–1,5300 (entspricht

standard: heissem Wasser – 100 Gew.%)

Brechungsindex-Messbereich, n_p1,2600–1,5000 mit Saphir-Prisma

optional

Genauigkeit: Brechungsindex $n_D \pm 0.0002$ (entspricht norma-

lerweise ± 0.1 Gew.%)

Reproduzierbarkeit und Stabilität entsprechen

der Genauigkeit

Ansprechzeit: 1 s ungedämpft, Dämpfungszeit wählbar bis zu

5 min

Kalibrierung: Mit 'Cargille'-Brechungsindex-Standardlösungen

über den gesamten Bereich von $n_D 1,3200-1,5300$

CORE-Optik: Keine mechanischen Einstellungen (US Patent

No. US6067151)

Digitale Messung: 3648 Pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge, Natri-

umlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation Automatisch, digitale Kompensation

Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten und gemäss von Vaisala dokumentiertem Ver-

fahren.

Umgebungstemperatur: Sensor: max. 45 °C (113 °F),

min. -20 °C (-4 °F)

Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F)

SENSOR PR-23-W: Saunders Body Sensor für aggressive Medien

Prozessanschluss: Mit PFA (Fluoriertes Ethylen Propylen) oder ETFE

(Ethylene tetrafluoroethylene) ausgekleideter

Ventilkörper 2", 3" oder 4"

Prozessdruck: max. 10 bar (145 psi)

Prozesstemperatur: -20 °C-+130 °C (-4 °F-+266 °F)

Medienberührte Teile, standard: Teflon® (PTFE), Prisma Spinel oder Saphir, Pris-

madichtung Teflon® (PTFE)

Sensor-Schutzklasse: IP67, Nema 4X

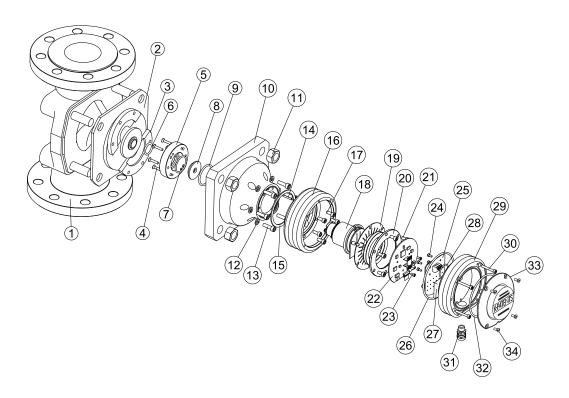
Sensorgewicht: Sensor mit 2" Ventilkörper 15 kg (33 lbs),

Sensor mit 3" Ventilkörper 26 kg (57 lbs), Sensor mit 4" Ventilkörper 33 kg (73 lbs)

SAUNDERS VENTILKÖRPER

Ventilkörper, Werkstoff Graphitguss

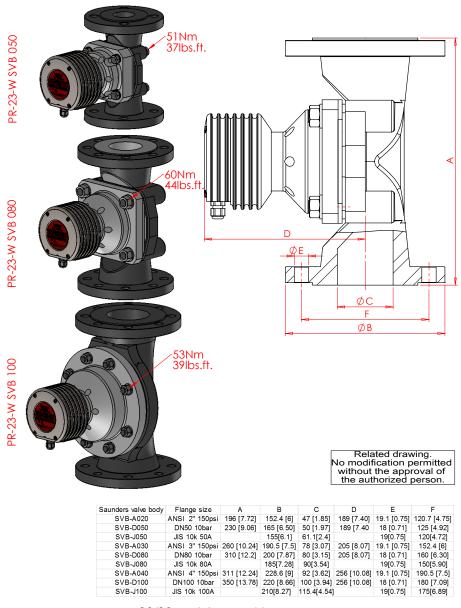
Ventilkörper-Auskleidung, Werkstoff PFA (Fluoriertes Ethylen Propylen) oder ETFE


(Ethylene tetrafluoroethylene)

Prozessanschluss ANSI Flansch 4 Inch 150 lbs / ANSI Flansch 3

Inch 150 lbs / ANSI Flansch 2 Inch 150 lbs / DIN Flansch DN 100 PN 16 / DIN Flansch DN

80 PN 16 / DIN Flansch DN 50 PN 16


9.9.3 PR-23-W Teileliste

Art.	Stck	Teile-Nr.	Beschreibung				
1	1		Saunders Ventilk. mit PFA-Auskl. ANSI 2"/DIN 50				
1	1		Saunders Ventilk. mit PFA-Auskl. ANSI 3"/DIN 80				
1	1		Saunders Ventilk. mit PFA-Auskl. ANSI 4"/DIN 100				
2	1		Anschlussplatte für 2" Ventilkörper				
2	1		Anschlussplatte für 3" Ventilkörper				
2	1		Anschlussplatte für 4" Ventilkörper				
3	2		Split-Scheibe		61.1		S
4	6		Schraube M4x20 DIN 7991 A4	Art.	Stck	Teile-Nr.	Beschreibung
5	1		PR-03/23-W Kopfring (PVDF)	*	1	PR-9010	Tellerfeder Set
6	1	PR-9252	O-Ring Dichtung 20.2 x. 3.0 Kalrez 6375UP		2		Tellerfeder
7	1	PR-9112	O-Ring Dichtung 31.6 x 2.4 FPM	20	1		Tellerfederhalter
8	1	PR-9122	Saphirplatte für PR-03/23-W	21	6		Schraube M5x10 DIN 912 A2
9	1	PR-9113	O-Ring Dichtung 37.2 x 3 FPM	22	1	PR-10100	Sensor Prozessor-Karte
10	1	PR-10102	PR-23-W 2" Kopf	23	4		Schraube M3x6 DIN 912 A2
10	1	PR-10103	PR-23-W 3" Kopf	24	4		Schraube M3x6 DIN 9112 A2
10	1	PR-10104	PR-23-W 4" Kopf	25	1	PR-10300	Busabschlusskarte
11	4		Schraube DIN 934 M16 A4	26	1	PR-10031	O-Ring Dichtung 89.5 x 3
12	6		Scheibe DIN 127 M6 A4	27	1	PR-9108	Trockner für PR-23
13	6		Schraube DIN 912 M6x20 A4	28	1	PR-10032	O-Ring Dichtung 24 x 2
14	1	PR-10048	68x3 O-Ring	29	1	PR-10000	PR-23 Abdeckung
15	1		Zentrierstift	30	4		Schraube M4x30 DIN 912 A4
16	1	PR-10005	PR-23 Basiselement	31	1		Kabeldurchführung M16x1.5
17	6		Schraube M5x10 DIN 912 A2	32	1	PR-10002	O-Ring Dichtung 82x3
18	1	PR-10012	PR-23 Kompakt-Sensor CORE-Modul	33	1		PR-23-W Endplatte mit Typenschild
19	1	PR-9011	Wärmeleiter	34	4		Schraube M4x8 DIN 964 A4

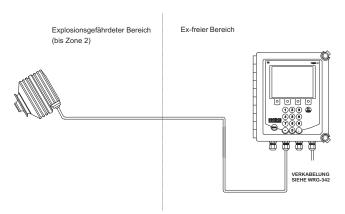
9.9.4 PR-23-W Montagehinweise

Der Ventilkörper des PR-23-W kann sowohl horizontal als auch vertikal eingebaut werden. Eine Abstützung des Sensors ist nicht erforderlich, da der Ventilkörper bzw. die Prozessleitung den Sensor trägt. In beiden Fällen sollte die Sensorachse horizontal liegen. Dies verhindert das Ablagern von Sedimenten oder Lufteinschlüssen auf dem Prisma. Das Entstehen von Lufteinschlüssen ist direkt nach einer Pumpe, vor einem Ventil oder einem tief liegenden Einbauort am wenigsten wahrscheinlich. Die empfohlene Fliessgeschwindigkeit beträgt 1,5 bis 6 m/s (6 bis 20 ft/sec).

Abbildung 9.27 PR-23-W Montage

9.10 Das PR-23 Prozessrefraktometer in explosionsgefährdeten Bereichen

Die PR-23 Refraktometer-Serie kann in explosionsgefährdeten Umgebungen eingesetzt werden, wenn untenstehende Modifikation von Vaisala Oyj durchgeführt wurden. Der Sensor des Refraktometer entspricht den Anforderungen gemäss der Essential Health and Safety Requirements durch die Erfüllungen der Richtlinie EN 50 021:1999.


Die PR-23-...-AX Refraktometer wurden von der DEKRA Certification B.V. gemäß Europäischer ATEX-Richtlinie 94/9/EC für ATEX Ex II 3G / EEx nA IIC T4 Gc und gemäß IECEx-Scheme für Ex nA IIC T4 Gc zertifiziert. Die Nummer der Baumusterprüfbescheinigung lautet KEMA 05ATEX1183X und die IECEx-Zerfitikatsnummer ist IECEx KEM 10.0033X. Diese Zertifizierungen decken die folgenden Ex-Standards ab: EN 60079-0:2012 / IEC 60079-0:2011, EN 60079-15:2010 / IEC 60079-15:2010.

Die PR-23-...-FM Refraktometer wurden von der Factory Mutual Research Corporation zertifiziert, Zulassungsnummer 3026104. Gerätezulassungen: Nicht-brennbar für Einsatz in Klasse I, Abteilung 2, Gruppe A, B, C & D, Gefährliche (klassifizierte) Standorte. Temperaturidentifikationsbewertungen für PR-23-...-FM ist T6 (Tamb = 45 °C).

Die PR-23-...-CS Refraktometer wurden von der Canadian Standards Association für Klasse I, Abteilung 2, Gruppe A-D zertifiziert. Die Zertifikatsnummer ist 1706327. Gerätezulassungen: Nicht-brennbar für Einsatz in Klasse I, Abteilung 2, Gruppe A, B, C & D, Gefährliche (klassifizierte) Standorte. Temperaturidentifikationsbewertung für PR-23-...-CS ist T4 (Tamb = 45 °C).

9.10.1 Das System

Das Vaisala K-PATENTS[®] Refraktometersystem (Abbildung 9.28) für explosionsgefährdete Bereiche besteht aus einem modifizierten Refraktometer-Sensor PR-23-...-AX/FM/CS, einem standardmässigen Messumformer DTR und einem standardmässigen Verbindungskabel PR-8230-...

Abbildung 9.28 Refraktometersystem PR-23-...-AX/FM/CS

Die ATEX/FM/CS-Zulassung des PR-23-...-AX/FM/CS Sensors ist auf dem Typenschild ersichtlich, siehe Abbildung 9.29. Beim Messumformer handelt es sich um einen standardmässigen DTR.

Die Zulassung ist für folgende Sensoren gültig: PR-23-AC, PR-23-AP, PR-23-GC, PR-23-GP, PR-23-M, PR-23-MS, PR-23-W und PR-23-RP.

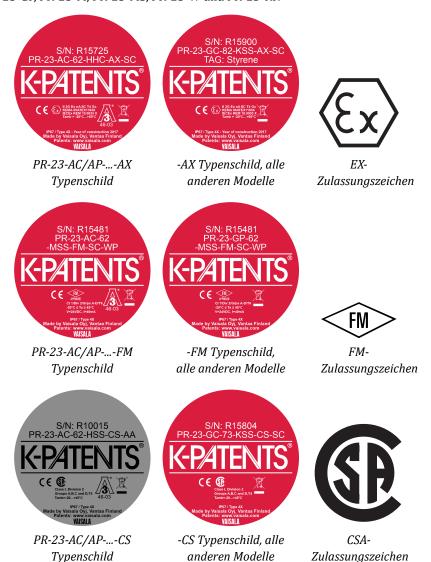


Abbildung 9.29 Typenschilder der PR-23-...-AX/FM/CS Sensoren

9.10.2 Montage

Die Verdrahtung muss gemäss Zeichnung WRG-342 durchgeführt werden, siehe Abbildung 9.30.

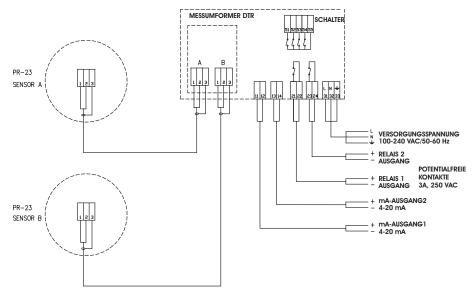


Abbildung 9.30 Sichere Verdrahtung gemäss WRG-342

- Wichtig: Die Installationen der FM-Einheit müssen den relevanten Anforderungen des National Electrical Code (ANSI/NFPA 70) für explosionsgefährdete (klassifizierte) Standorte der Abteilung 2 sowie allen Anweisungen in diesem Handbuch entsprechen. Die gesamte Verkabelung der PR-23-...-FM-Systeme muss in einer Leitungsführung verlegt werden.
- Wichtig: Es ist nicht gestattet unerlaubte Veränderung vorzunehmen oder andere als die original Vaisala Komponenten zu verwenden, da dies den sicheren Betrieb des Systems nachteilig beeinflussen kann.

Das Sensorkabel darf nicht entfernt oder angeschlossen werden, solange das System unter Spannung steht. Trennen Sie den DTR von der Spannungsversorgung bevor sie das Sensorkabel entfernen. Nachdem Sie das Sensorkabel wieder angeschlossen haben, können Sie die Spannungsversorgung wieder einschalten.

Wichtig: Es müssen Vorkehrungen getroffen werden, um zu verhindern, dass die Nennspannung durch vorübergehende Störungen von mehr als 119V überschritten wird.

9.11 Eigensichere Refraktometer PR-23-...-IA und -IF

Gefährdete Bereiche sind Orte, an denen die Möglichkeit von Bränden oder Explosionen aufgrund von entzündlichen Gasen, Dämpfen oder Feinstaub besteht.

Zone 0: Ein Bereich, in dem ein explosives Gas-Luft-Gemisch dauerhaft beziehungsweise für längere Zeiträume vorhanden ist.

Zone 1: Ein Bereich, in dem ein explosives Gas-Luft-Gemisch wahrscheinlich bei normalem Betrieb auftreten kann.

Der Eigensichere Refraktometer von Vaisala kann in gefährdeten Bereichen der Klassen Zone 1 und Zone 2 verwendet werden.

Die PR-23-...-IA Refraktometer wurden von VTT gemäß Europäischer ATEX-Richtlinie 94/9/EC für ATEX Ex II 1G und Ex ia IIC T4 Ga un Ex ia I Ma (Tamb= -20 - +65°C) und gemäß IECEx-Scheme für Ex ia IIC T4 Ga und Ex ia I Ma (Tamb= -20 - +65°C) zertifiziert. Die Nummer der EC-Baumusterprüfbescheinigung lautet VTT 07 ATEX065X und die IECEx-Zerfitikatsnummer ist IECEx VTT 08.0004X. Diese Zertifizierungen decken die folgenden Ex-Standards ab: EN 60079-0:2012 / IEC 60079-0:2011 und EN 60079-11:2012 / IEC 60079-11:2011.

Der PR-23-...-IF Refraktometer wurde von FM gemäß US-amerikanischen Standards **für IS/I/1/ABCD/T4 und I/0/AEx ia/IIC/T4 (Tamb = -20 - +45 °C)** zertifiziert. Die Zerfitikatsnummer ist 3036400. Diese Zertifizierung deckt die folgenden US-Standards ab: Klasse 3600 1998, Klasse 3610:2007, Klasse 3810:2005, ANSI/ISA-12.00.01:1999, ANSI/ISA-12.02.01:2002, ANSI/ISA-82.02.01:2004, ANSI/NEMA 250:1991 und ANSI/ IEC 60529:2004.

Der PR-23-...-IF Refraktometer wurde von FM gemäß kanadischen Standards **für IS/I/1/ABCD/T4 und I/0/Ex ia/IIC/T4 (Tamb = -20 – +45 °C)** zertifiziert. Die Zerfitikatsnummer ist 3036400C. Diese Zertifizierung deckt die folgenden kanadischen Standards ab: CSA C22.2 Nr. 94:1999, CSA C22.2 Nr. 142:2004, CSA C22.2 Nr. 157:2006, CSA C22.2 Nr. 60529:2005, CSA C22.2 Nr. 61010.1-1:2004, CSA E60079-0:2007 und CSA E60079-11:2002.

Hinweis: Die Wartung des eigensicheren Refraktometers PR-23-...-IA/IF ist ausschließlich geschultem Wartungspersonal von Vaisala und deren Vertretern erlaubt. Die Wartung muss in übereinstimmung mit gesonderten und von Vaisala festgelegten Anweisungen erfolgen und sind Vaisala zu melden.

9.11.1 Ausstattung

Der eigensichere Prozessrefraktometer von Vaisala besteht aus: einem modifizierten Refraktometersensor PR-23-...-IA/IF, einem Messumformer STR mit Einkanal-Konnektivität sowie einem IS Isolator und Verkabelung zwischen dem Refraktometersensor und dem Messumformer (Figure 9.31).

Die Ausstattung ist nur dann eigensicher, wenn **sämtliche** Montageanweisungen in Abschnitt 9.11.2 befolgt werden. Sollte das Gerät auf irgendeine Art und Weise während des Transports beschädigt worden sein, geben Sie es, bevor sie es installieren, beim nächsten Service Point von Vaisala zur Prüfung zurück. Installieren Sie niemals ein beschädigtes Gerät in die Prozesslinie.

Der Name des von ATEX zugelassenen Sensors PR-23-...-IA/-IF ist auf dem Typenschild angegeben, siehe Abbildung 9.32. Der Messumformer ist vom Typ STR und ermöglicht den Anschluss eines Sensors.

Ein eigensicherer Sensor verfügt über eine andere Prozessorplatine und eine andere Terminatorplatine als ein standardmäßiger Sensor. Die anderen Teile sind dieselben wie bei standardmäßigen Sensoren (siehe weiter oben in diesem Kapitel die vollständige Teileliste).

Achtung! Ersetzen Sie keine Teile von eigensicheren Sensoren mit Teilen eines standardmäßigen Sensors!

138 PR-23 Betriebsanleitung

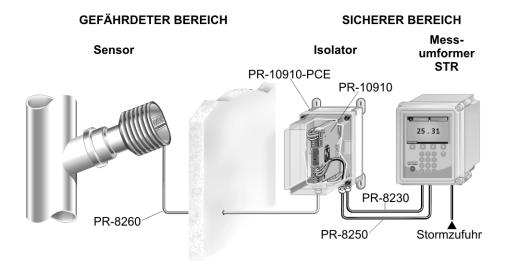


Abbildung 9.31 Refraktometersystem PR-23-...-IA/IF

Abbildung 9.32 Eigensichere Typenschilder des Sensors

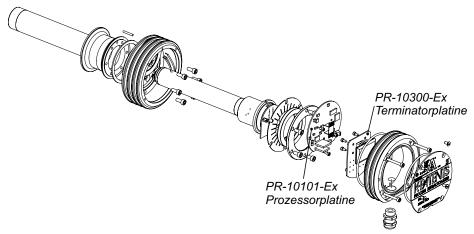


Abbildung 9.33 Eigensichere Teile

Wichtig: Sollte die Sensorabdeckung aus Aluminium bestehen, kann der Refraktometersensor zündfähige Funken bilden, wenn sie bei der Installation mit anderen Metallteilen zusammenstößt. Eine Sensorabdeckung aus Aluminium muss über einen Aufkleber verfügen, der eine diesbezügliche Warnung ausweist.

Contains lightmetals Ignition hazard! Avoid impact!

Abbildung 9.34 Warning sticker

- Wichtig: Die Refraktometermodelle PR-23-M, PR-23-MS und PR-23-W enthalten Teile aus PTFE in den Sensorköpfen. Diese Teile haben ein elektrostatisches Risiko. Die Refraktometermodelle PR-23-M, PR-23-MS und PR-23-W sollten nur für das Messen von Flüssigkeiten mit hoher Leitfähigkeit (>10000 pS/m) in explosionsgefährdeten Atmosphären verwendet werden.
- **Wichtig:** Die Lackoberfläche des Gehäuses des PR-23-MS Refraktometers kann sich elektrostatisch aufladen und sollte deshalb in explosionsgefährdeten Atmosphären nur mit einem feuchtem Tuch gereinigt werden.

9.11.2 Eigensichere Montage

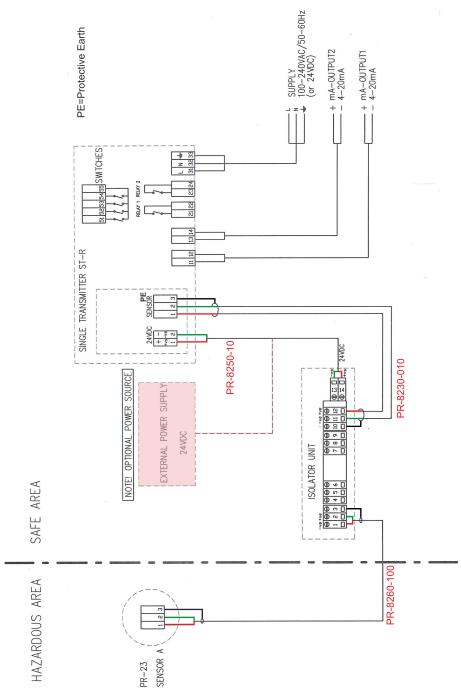
Wählen Sie für den Sensor, die Isolator-Einheit und den Messumformer einen Anbringungsort, an dem sie vor Schlag- und Reibungsbelastungen geschützt sind. Sollten irgendwelche Systemteile eine Schlagbelastung erleiden, schalten sie das Gerät unverzüglich ab und lassen Sie es vom geschulten Wartungspersonal von Vaisala vor einer erneuten Verwendung überprüfen.

Die Stromanschlüsse für den PR-23-...-IA sind in der unten stehenden Abbildung 9.35 beschrieben. Die Stromanschlüsse für den PR-23-...-IF sind in der unten stehenden Abbildung 9.36 beschrieben.

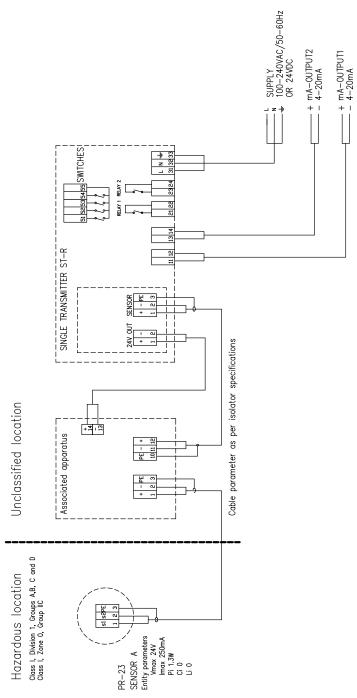
Hinweise: In den Vereinigten Staaten muss die Installation mit den geltenden Anforderungen von ANSI/ISA RP12.6 und dem National Electrical Code (ANSI/NFPA 70) übereinstimmen. In Kanada muss die Installation mit den anwendbaren Vorschriften

des Canadian Electrical Code Teil I C22.2.1 Abschnitt 18 und Anhang F übereinstimmen. Einbauzeichnungen des Herstellers für die zugehörige Vorrichtung müssen bei der Installation dieser Ausrüstung befolgt werden. Ex ia ist als eigensicher definiert. Das Eigensicherheitskonzept erlaubt die Verbindung von zwei eigensicheren Geräten. Entity-Parameter mit FM-Zulassung und CSA-Zertifizierung werden nicht speziell als Kombination in einem System untersucht, wenn:

Uo oder Voc oder Vt <= Vmax, Io oder Isc oder It <= Imax Ca oder Co >= Ci + Ccable oder La oder Lo >= Li + Lcable, Po < Pi.


Steuergeräte, die mit der zugehörigen Vorrichtung verbunden sind, dürfen nicht mehr als 250 Vrms oder Vdc verwenden oder erzeugen. Wichtig: Verwenden Sie Versorgungsleitungen, die für 5 K über der Umgebung geeignet sind.

Für Anlagen nach Abteilung 1 muss die Konfiguration der zugehörigen Vorrichtung gemäß Entity Concept FM-zugelassen/CSA-zertifiziert sein.


Kabel:

- Kabel mit 10 m Länge, Teilenummer PR-8230-010, zur Verbindung des Messumformers STR und der Isolator-Einheit. Die Kabellänge beträgt maximal 100 m.
- Stromkabel mit 10 m Länge, Teilenummer PR-8250-010, zur Verbindung des Messumformers STR und der Isolator-Einheit, Teilenummer PR-8250-010. Die Kabellänge beträgt maximal 100 m.
- Das eigensichere Kabel zwischen Isolator-Einheit und Sensor, Teil RP-8260-xxx, wobei xxx die Kabellänge in Metern angibt. Die Länge beträgt maximal 200 m. Informationen zu den Kabelanschlüssen finden sich in den Abbildung 9.35 und 9.37.

Hinweis: Die Isolator-Einheit kann ebenso eine optionale externe Stromyersorgung mit +24V DC statt der Stromversorgung mit +24V DC vom Messumformer verwenden. +24V DX ist mit den Anschlüssen 13 und 14 verbunden. (Wenn +24V DC verwendet wird, wird das Stromkabel PR-8250 nicht verwendet.)

Abbildung 9.35 Eigensichere Verkabelung des PR-23-...-IA gemäß WRG-362

Abbildung 9.36 Eigensichere Verkabelung, PR-23-...-IF

9.11.3 Isolator/Schranken

Die Verkabelung der Isolator-Einheit wird unten in Abbildung 9.37 erläutert.

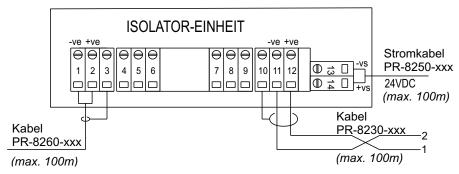


Abbildung 9.37 Verkabelung der Isolator-Einheit

Hinweis: Ist die Stromversorgung nicht ordnungsgemäß mit den Anschlüssen der Isolator-Einheit verbunden (+24V DC an Anschluss 14 (+vs) und Null an Anschluss 13 (-vs)), gibt der Messumformer STR die Meldung No signal (kein Signal) aus. Wenn die Anschlüsse 11 und 12 nicht ordnungsgemäß verbunden sind (Sensorkabel zur Verbindung von Anschluss 2 des Messumformers STR mit Anschluss 11 (-ve) der Isolator-Einheit sowie Anschluss 1 des Messumformers STR mit Anschluss 12 (+ve) der Isolator-Einheit), erscheint ebenso die Meldung No signal (kein Signal).

10 Messumformer DTR, Spezifikationen

Model: INDICATING TRANSMITTER Product code: DTR-U-GP-AC

S/N: T06802 Tag:

100-240 V AC, 50/60 Hz, 30 VA Made by VAISALA Oyj, Vantaa, Finland

www.vaisala.com

((IP66

Model: INDICATING TRANSMITTER Product code: DTR-M-GP-DC-DD

S/N: T06816

Tag:

24 V DC, 30 VA = = =

Made by VAISALA Oyj, Vantaa, Finland

www.vaisala.com

C € IP66

Abbildung 10.1 Typenschild, Messumformer DTR

Model: INDICATING TRANSMITTER
Product code: STR-M-GP-AC

S/N: T06820

Tag:

100-240 V AC, 50/60 Hz, 30 VA

Made by VAISALA Oyj, Vantaa, Finland

www.vaisala.com

((IP66

Model: INDICATING TRANSMITTER
Product code: STR-M-GP-DC

S/N: T06817 Tag:

24 V DC, 30 VA = = =

Made by VAISALA Oyj, Vantaa, Finland

www.vaisala.com

Abbildung 10.2 Typenschild, Messumformer STR

10.1 Kompatibilität

Der Messumformer DTR ist ausschließlich mit der Refraktometer-Reihe PR-23 kompatibel. Ein oder zwei beliebige PR-23-Refraktometersensoren können an den DTR angeschlossen werden. *PR-01- und PR-03-Refraktometersensoren sind mit einem Messumformer DTR nicht kompatibel*.

Für eigensichere Installationen (siehe Abschnitt 9.11) gibt es eine Version des Messumformers mit einem Sensor (STR). Die im vorliegenden Kapitel enthaltenen Informationen gelten, soweit nicht anderweitig angegeben, auch für den Messumformer STR.

10.1.1 DTR Programmversionen

Die DTR-Programmversion kann über die Ethernet-Verbindung aktualisiert werden (siehe Kapitel 12). Setzen Sie sich mit einem Vertreter von Vaisala in Ihrer Nähe in Verbindung, um weitere Informationen über die Möglichkeiten zu erhalten, wie Sie Ihre DTR-Programmversion aktualisieren können.

Programmversion 4.07:

Die DTR-Programmversion 4.07 ist mit allen DTR und allen PR-23 Sensoren mit Programmversion 1.00 oder höher kompatibel. Die DTR-Programmversion enthält folgende neue Funktionen:

- **DD-23 Divert Control Unit:** Protokollversionen 2 und 3.
- Netzwerk-Boot für Sensoren: Netzwerk-Boot von Sensoren von DTR-Dateien.
- mA Ausgang: Unterstützung für negative Spanne für mA-Ausgang.
- **Temperatur-Bias:** Parameter für Temperatur-Bias
- Temperatur halten: Die F\u00e4higkeit, die Temperatur halten, wenn die Konzentration f\u00fcr Reinigung oder externes Halten gehalten wird.
- **Filter Anstiegsratenbegrenzung:** Neues Ausgangsfilterverfahren, um die maximale Änderung von einer Messung zur nächsten zu begrenzen.
- Unterstützung für erweiterte http-Schnittstelle
- **Instrumenten-Tags:** Die Option, den Messumformer- und Sensor-Informationen Instrumenten-Tags hinzuzufügen (max. 16 Zeichen).
- Umgang mit Status Reinigung fehlgeschlagen: Umgang mit Reinigungserholung geändert, so dass der Status "Reinigung fehlgeschlagen" nicht gelöscht wird, wenn die Reinigungsprüfung nicht bestanden wurde. Der Fehlerstatus wird gelöscht, wenn die Reinigungsprüfung bestanden wurde.

Programmversion 3.0:

Die Programmversion 3.0 ist mit jeglichen DTRs von Vaisala sowie jeglichen PR-23-Sensoren mit Programmversion 1.00 oder höher kompatibel. Die DTR-Programmversion enthält die folgenden neuen Merkmale:

- Einzel-Sensor-Modus für ein eigensicheres Refraktometersystem PR-23-...-IA (siehe Abschnitt 9.11). Mit diesem Modus wird zusammen mit einer besonderen H1-Schnittstellenkarte für einen Einzelanschluss ein Messumformer STR gebildet.
- Mit der Umleitfunktion kann der DTR als Teil eines Umleitsteuerungssystems (Divert Control System) zur Kontrolle der Konzentration der schwarzen Flüssigkeit bei Papier- und Zellstoff-Anwendungen eingesetzt werden.

Programmversion 2.0:

Die DTR Programmversion 2.0 ist mit allen DTR's und allen PR-23 Sensoren ab Programmversion 1.00 kompatibel. Die Programmversion verfügt über folgende Funktionen:

- **Geräte-Homepage** mit voll-funktionsfähiger Fernbedienung, siehe Abschnitt 12.4.
- **Mehrsprachige Bedienoberfläche**, zur Auswahl verschiedener Sprachversionen für die DTR Bedienoberfläche, siehe Abschnitt 5.2.2.
- Lineare Dämpfung bei schnellen Änderungen der Prozessbedingungen, siehe Abschnitt 6.1.
- Funktionstaste Feldprobe f
 ür eine einfachere und genauere Feldkalibrierung, siehe Abschnitt 6.4.3.

10.2 Modellkodierung

10.2.1 Messumformermodellkodierung

MODELL UND BESCHREIBUNG	MODELL				
DTR = Messumformer (Verbindung zu zwei Sensoren)					
STR = Messumformer (Verbindung zu einem -IA/-IF-Sensor)	STR				
Kabelanschluss					
-U = ½ Zoll NPT-Typ Kabelkanalnaben für CSA-zertifizierte Messumformer	-U				
-M = M20x1,5 metrische Kabeldurchführungen für Universalmessumformer					
Elektrische Klassifizierung					
-GP = universelle Anwendung	-GP				
-CS = CSA-zertifiziert für universelle Anwendung bei (normalen) Einsätzen	-CS				
Anwendbar für CSA und ANSI/UL-Standards bf (A)					
Stromversorgung					
-AC = Stromversorgung 100-240 Volt Wechselstrom 50/60 Hz					
-DC = Stromversorgung 24 Volt Gleichstrom (B)	-DC				

⁽A) Nur mit Kabelverbindung Code-U, ½ NPT-Typ Kabelkanalnaben und Wechselstromversorgung verfügbar

Tabelle 10.1 Messumformermodellkodierung

10.2.2 Verbindungskabel, Modellkodierung

TEILENUMMER UND BESCHREIBUNG						
PR-8230 =	Verbindungskabel zwischen Messumformer und Sensor	PR-8230				
Kabellänge -010 = =	10 Meter (33 Fuß), Standardlänge Geben Sie die Kabellänge in Meter (in 10 Meter-Maßsprüngen) an Die maximale Länge ist 200 Meter (660 Fuß)	-010 				

Tabelle 10.2 Verbindungskabel, Modellkodierung

⁽B) Nur mit GP-Option

10.2.3 Messumformer-Spezifikationen

Display: Grafische LCD mit LED-Backlight und 320x240 Pixel

Tastatur: 18 Membrantasten

Stromausgang: Zwei unabhängige Stromquellen, 4-20 mA, maximale

Belastung 1000 Ohm, galvanische Isolierung 1500 VDC bzw. AC (Spitze), Aufrechterhaltung der Funktionen

während der Prismenreinigung

Stromversorgung: AC-Eingang 100-240 VAC/50-60 Hz/30 VA, optional 24

VDC

Alarme/Reinigungsre-

Zwei eingebaute Signalrelais, max. 250 V/3 A

lais:

Eingangsschalter: Vier Schaltereingänge

Stromausgänge: Zwei Stromausgänge, einzeln zur Anzeige der

Prozesskonzentration beziehungsweise Temperatur einer

der Sensoren konfigurierbar

Sensorkonnektivität,

DTR:

Ein oder zwei Sensoren können mit dem Messumformer

verbunden werden. Sensoren sind unabhängig

voneinander: mit eigenen Parametereinstellungen und bei

verschiedenen Anwendungen einsetzbar

Sensorkonnektivität,

STR:

Nur ein Sensor kann mit dem Messumformer verbunden

werden.

Wird zusammen mit dem eigensicheren Sensor

PR-23-...-IA verwendet.

Messumformer-

Schutzklasse:

Gehäuse IP66, Nema 4X

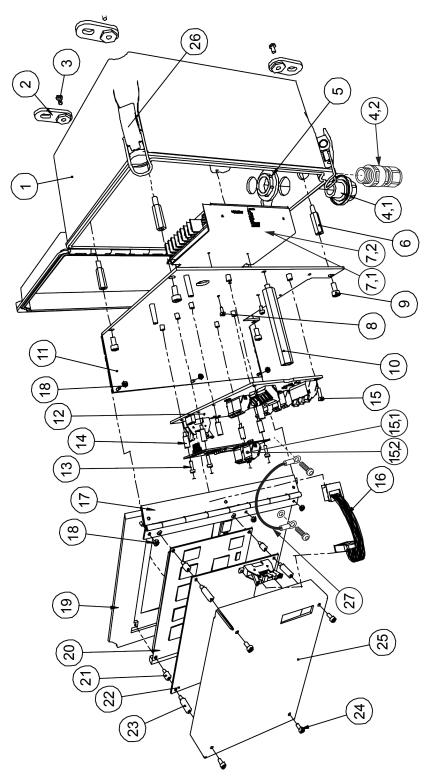
Gewicht des Messum-

formers:

4,5 kg (10 lbs)

10.2.4 Verbindungskabel, Spezifikationen

Kabel: IEC 61158-2 kompatibles Zweidrahtkabel:


zwei Signaldrähte und

Kupferabschirmung 0,8 mm² (18 AWG) Kabel-Widerstand 24 Ohm/km (pro Draht) Kabel-Dämpfung 3,0 dB/km @ 28 kHz

Kabellänge: Standard 10 m (33 ft), max. Gesamtlänge 200 m (660 ft)

Hinweis: Für Informationen über *eigensichere Verkabelung* beim PR-23-...-IA siehe Abschnitt 9.11.2 auf Seite 139.

10.3 Teileliste für den Messumformer

Abbildung 10.3 Teile des Messumformers DTR (STR)

	:	Beschreibung	H1-Schnittstellenkarte	H1-Schnittstellenkarte für Einzelsensor	Flachbandkabel	DTR Tür vollständig (Inc. PR-10500)	Klavierscharnier	M3 Mutter A2	Tastatur	Display-Karte	Abstandhalter-Schraube M3x6	Messumformer Prozessorkarte	Abstandhalter-Schraube	Schraube M3x6 DIN 912 A2	DTR-Tür Schutzplatte	Türriegel
		Teile-Nr.	PR-10701	PR-10705	PR-12109	PR-10830						PR-10500				PR-7340
		Pcs.	1	1	1	T	1	9	T	T	1	T	T	4	T	Н
		Item	15.1	15.2	16	*	17	18	19	70	21	22	23	24	25	56
Beschreibung	Gehäuse	Befestigungslaschen	Flachkopfschrauben 10-32	Kabelkanalnabe ½ NPT-Typ ST-1 (US)	Kabeldurchführung M20x1,5 (Europäisch) mit Adapter	Kabelkanalnabemutter	Abstandhalter-Schraube 10-32/M4	Netzteil 100-240 V AC 50-60 Hz	Netzteil 24 V DC	Schraube M3x6 DIN 912 A2	Schraube M4x10 DIN 912 A2	Abstandhalter-Schraube M4x	Rahmenplatte	Messumformer Motherboard	Schraube M3x6 DIN 912 A2	Abstandhalter-Schraube M3x13
Teile-Nr.								PR-10810	PR-10820					PR-10600		
Stck.	7	4	4	7	7	7	4	1	1	7	4	1	1	1	1	9
Art.	1	7	က	4.1	4.2	2	9	7.1	7.2	∞	6	10	11	12	13	14

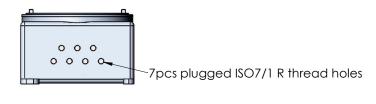
10.4 Flammensicheres DTR/STR-Gehäuse

Das flammensichere Gehäuse eines DTR oder STR besteht aus Aluminium. Es ist optional mit ATEX- oder IECEx-Zertifizierung und mit oder ohne Trennschalter für Installationen in explosionsgefährdeten Bereichen (Ex-Zone 1 und 2) erhältlich.

Der Ex-klassifizierte Klemmenkasten ist für Gefahrenbereiche vorgesehen, in denen brennbare Gase vorhanden sind, die durch einen elektrischen Funken oder heiße Oberflächen entzündet werden können. In solchen Umgebungen gehen die Ausrüstungshersteller davon aus, dass nicht alle Bereiche vor dem Eindringen von Gasen geschützt werden können. Deshalb ist die Ausrüstung so ausgelegt, dass die Explosion eingedämmt wird, indem die Flammen einen Pfad entlang geleitet werden, der so lang und schmal ist, dass das Abkühlen der Gase gewährleistet wird und eine externe Explosion verhindert wird. Dies ist die älteste Methode zum Verhindern von Explosionen, und sie ist immer noch das sicherste Verfahren, da es auf einer sehr einfachen und nahezu unfehlbaren Technologie basiert.

Der Klemmenkasten vom Typ EJB ist für Ethylengas der Explosionsgruppe IIB und Wasserstoffgas der Explosionsgruppe IIC ausgelegt. Der Klemmenkasten vom Typ GUB ist für Gase der Explosionsgruppe IIC ausgelegt. Beide Ex-klassifizierten Klemmenkästen verfügen über ein Fenster, durch das der Benutzer das DTR-/STR-Display einsehen kann.

10.4.1 Typenbezeichnung


Modell und Beschreibung	Modell					
DTR = Messumformer (Verbindung für zwei Sensoren)	DTR					
STR = Messumformer (Verbindung für einen -IA/-IF-Sensor)						
Kabelanschluss						
-R = ½" ISO 7/1-RC-Gewinde	-R					
Elektrische Klassifizierung						
-B1 = Atex Ex d IIB+H2 T6 Gb, für -AX-Modell T _{Umgebung} -25 +45 °C, Typ EJB	-B1					
-B2 = IECEx Ex d IIB+H2 T6 Gb, für -AX-Modell T _{Umgebung} -25 +45 °C, Typ EJB	-B2					
-B3 = Atex Ex d[ia Ga] IIB+H2 T6 Gb, für -IA-Modell T _{Umgebung} -25 +45 °C, Typ EJB (A)	-B3					
-B4 = IECEx Ex d[ia Ga] IIB+H2 T6 Gb, für -IA-Modell T _{Umgebung} -25 +45 °C, Typ EJB (A)	-B4					
-C1 = Atex Ex d IIC T6 Gb, für -AX-Modell T _{Umgebung} -25 +45 °C, Typ GUB	-C1					
-C2 = IECEx Ex d IIC T6 Gb, für -AX-Modell T _{Umgebung} -25 +45 °C, Typ GUB	-C2					
-C3 = Atex Ex d[ia Ga] IIC T6 Gb, für -IA-Modell T _{Umgebung} -25 +45 °C, Typ GUB (A)	-C3					
-C4 = IECEx Ex d[ia Ga] IIC T6 Gb, für -IA-Modell T _{Umgebung} -25 +45 °C, Typ GUB (A)	-C4					
Gehäusematerial						
-AL = Aluminium-Klemmenkasten	-AL					
Stromversorgung						
-AC = Stromversorgung 100–240 V AC 50/60 Hz	-AC					
-DC = Stromversorgung 24 V DC	-DC					
Option						
-MX = mit Feldbus-Wandler, nur für EJB-Klemmenkasten	-MX					

(A) Mit Trennschalter PR-10910 oder PR-10910-RH

10.4.2 Abmessungen

Abbildung 10.4 Abmessungen des EJB-Gehäuses

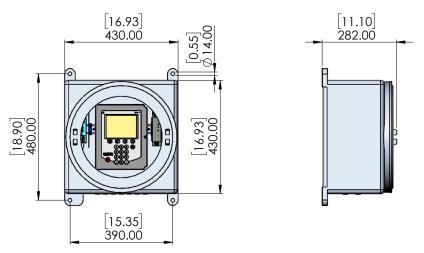
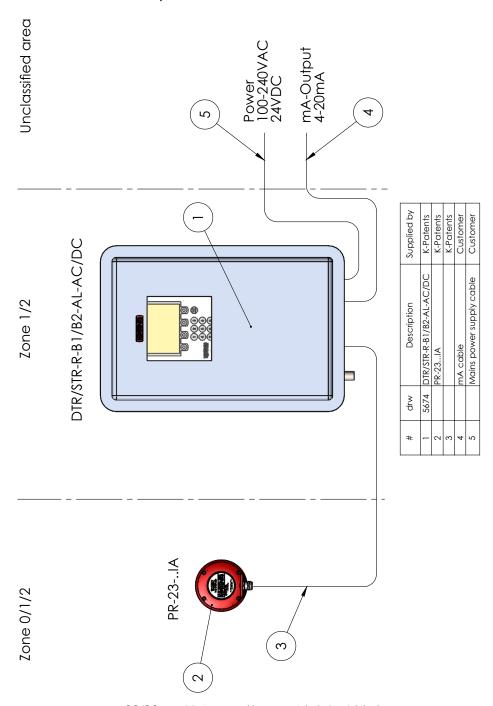
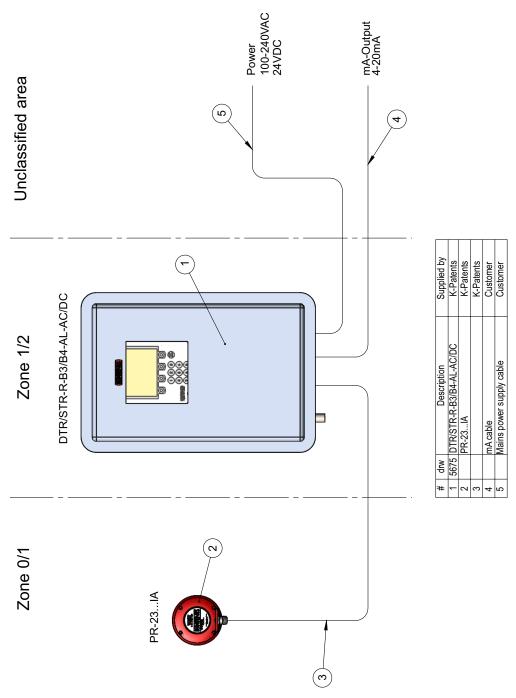




Abbildung 10.5 Abmessungen des GUB-Gehäuses

10.4.3 Refraktometersystem mit flammensicherem Gehäuse

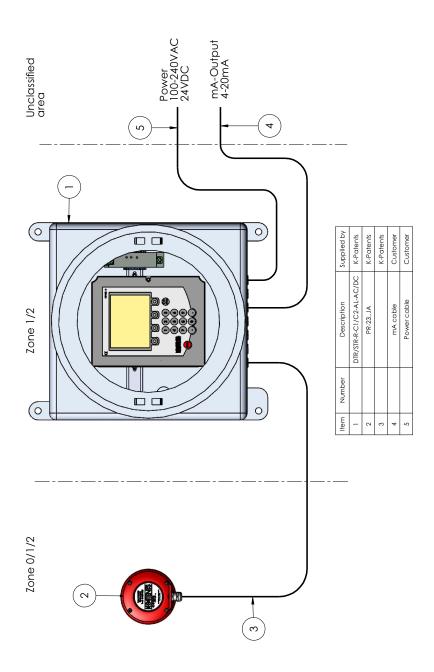


Abbildung 10.6 DTR/STR-R-B1/B2-AL-AC/DC

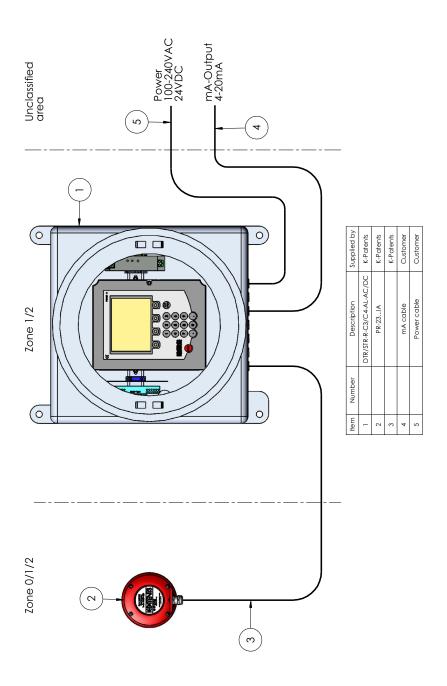
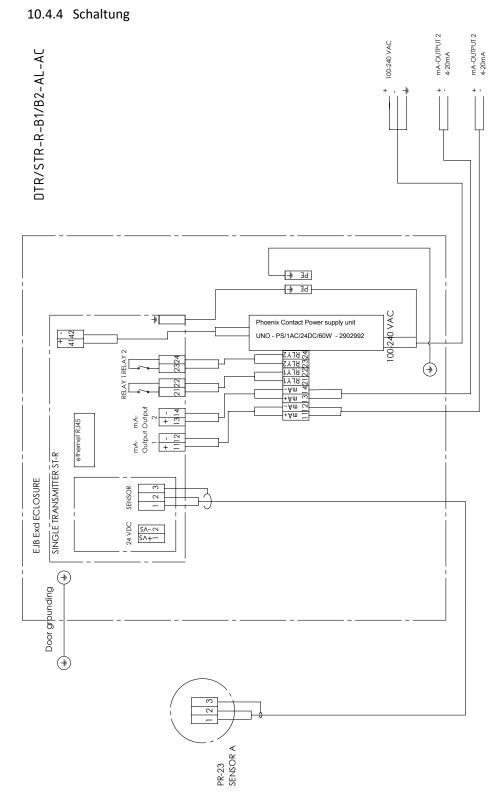
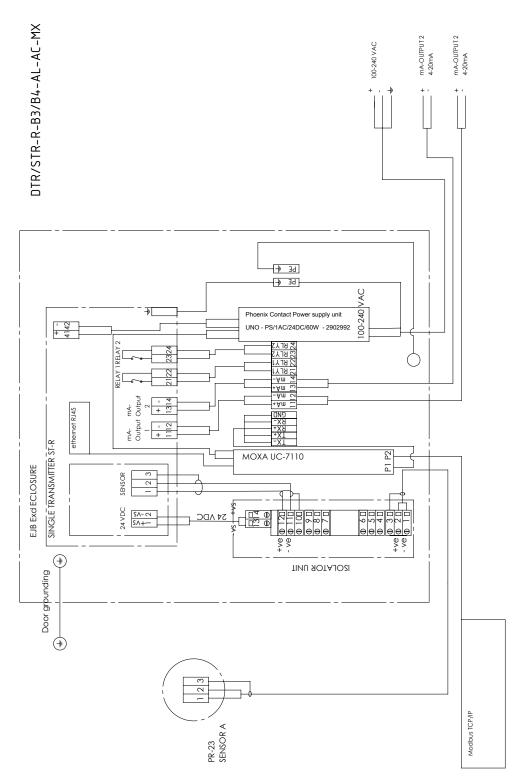
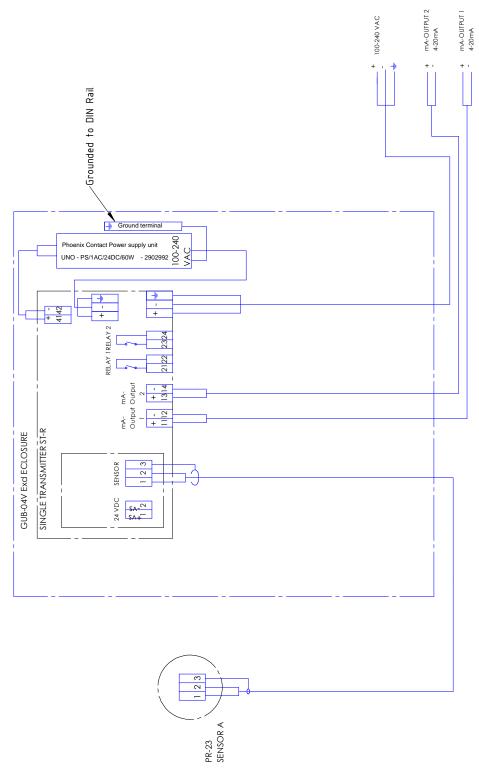


Abbildung 10.7 STR-R-B3/B4-AL-AC/DC


156 PR-23 Betriebsanleitung


Abbildung 10.8 DTR/STR-R-C1/C2-AL-AC/DC


Abbildung 10.9 STR-R-C3/C4-AL-AC/DC

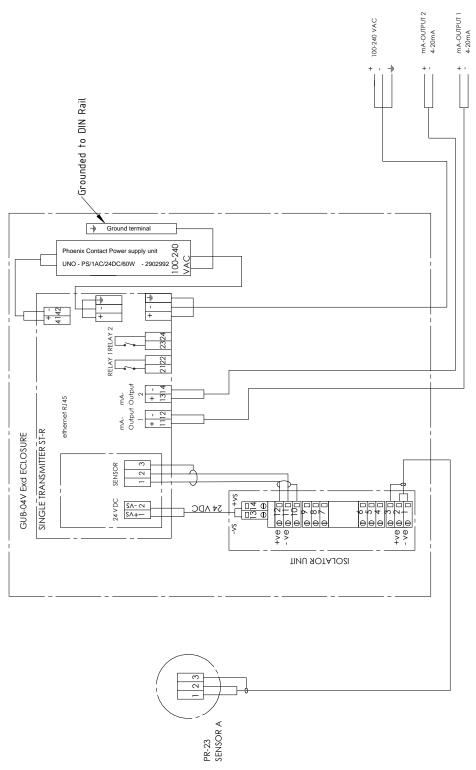

Abbildung 10.10 Schaltung des EJB-Gehäuses ohne Trennschalter (DTR/STR-R-B1/B2-AL-AC)

Abbildung 10.11 Schaltung des EJB-Gehäuses mit Trennschalter und Feldbus-Wandler (STR-R-B3/B4-AL-AC-MX)

Abbildung 10.12 Schaltung des GUB-Gehäuses ohne Trennschalter (DTR/STR-R-C1/C2-AL-AC)

Abbildung 10.13 Schaltung des GUB-Gehäuses mit Trennschalter (STR-R-C3/C4-AL-AC)

10.4.5 Spezifikationen

Spezifikationen für DTR/STR in Ge	ehäuse vom Typ EJB oder GUB							
Elektrische Spezifikationen								
Gehäuse vom Typ EJB mit Wechselstromquelle								
Nenneingangsspannungsbereich	100 V AC 240 V AC							
Leistungsaufnahme	1,3 A (100 V AC) 0,6 A (240 V AC)							
Nennleistungsaufnahme	60 W							
Eingangssicherung	2,5 A (träge, intern)							
Auswahl geeigneter Leistungs- schalter	6 A 16 A (Charakteristik B, C, D, K)							
Gehäuse vom Typ EJB mit Gleichs	tromquelle							
Nenneingangsspannungsbereich	10 V DC 32 V DC Eingangsverpolschutz							
Eingangsstrom	2,1 A (typisch), 5,0 A (max.)							
Eingangsschutz	6,3 A/125 V DC interne Sicherung							
Nennleistungsaufnahme	40 W							
Gehäuse vom Typ GUB mit Wechs	elstromquelle							
Nenneingangsspannungsbereich	100 V AC 240 V AC							
Leistungsaufnahme	0,4 A (100 V AC) 0,2 A (240 V AC)							
Einschaltstrom	14 A bei 10 V, 28 A bei 200 V							
Überstromschutz	Betrieb bei 105 % min. Nennstrom, automatische Wiederherstellung							
Überspannungsschutz	Automatische Wiedereinschaltung							
Nennleistungsaufnahme	30 W							
Gehäuse vom Typ GUB mit Gleich	stromquelle							
Nenneingangsspannungsbereich	19 V DC 32 V DC Eingangsverpolschutz durch interne Sicherung							
Eingangsstrom	1,1 A (typisch)							
Interner Gleichstromquelle- Abgangsschütz	Überspannungsschutz ≥26,4 V DC. Ausgangsabschaltung (für Reset 1 Minute nach Abschaltung warten) Ausgangsabschaltung mit automatischer Erholungsstrom-Begrenzung auf 1,21 A							
Nennleistungsaufnahme	25 W							
Klassifizierungen explosionsgefäh	rdeter Bereiche							
Installation (EN 60079.14)	Zone 1, 2, 21, 22							
ATEX C €	Gehäuse vom Typ EJB: II 2 GD Ex d IIB+H2 T6 Gb IP66/67 Ta -25 +45 °C (ohne Trennschalter) II 2(1)GD Ex d[ia Ga] IIB+H2 T6 Gb IP66/67 Ta-25 +45 °C (mit Trennschalter)							
0772 (£x)	Gehäuse vom Typ GUB: II 2GD Ex d IIC T6 Gb IP66 Ta -25 +45 °C (ohne Trennschalter) II 2(1)GD Ex d[ia Ga] IIC T6 Gb IP66 Ta -25 +45 °C (mit Trennschalter)							

IECEx	Gehäuse vom Typ EJB:							
	Ex d IIB+H2 T6 Gb IP66/67 Ta -25 +45 °C (ohne Trennschalter)							
	Ex d[ia Ga] IIB+H2 T6 Gb IP66/67 Ta-25 +45 °C (mit Trennschalter)							
	Gehäuse vom Typ GUB:							
	denduse vom Typ GOB.							
	Ex d IIC T6 Gb IP66 Ta -25 +45 °C (ohne Trennschalter)							
	Ex d[ia Ga] IIC T6 Gb IP66 Ta -25 +45 °C (ohne Trennschalter)							
Umgebungstemperatur	-25 +45 °C							
Gehäusematerial	Aluminium							
Gewicht	Gehäuse vom Typ EJB: 37 kg							
	Gehäuse vom Typ GUB: 42 kg							
Schutzart	EJB: IP66/67							
	GUB: IP66							

11 Safe-Drive™ 165

11 Safe-Drive™

Das Vaisala K-PATENTS[®] Safe-Drive™ -System wird für das sichere Einsetzen und Entfernen eines Refraktometersensors verwendet, während die Prozessleitung unter vollem Prozessfluss und -druck steht. Das Safe-Drive™ -System wird in der Regel in einem kontinuierlichen Verfahren mit seltenen Stillständen und großen Rohren eingesetzt, deren Durchmesser 50 mm (2") oder mehr beträgt, z.B. in der Holzzellstoffindustrie.

11.1 Systembeschreibung

Das Safe-Drive™ -System besteht aus einem Safe-Drive™ -Absperrventil, das an die Prozessleitung geschweißt ist, sowie aus einem PR-23-SD-Refraktometersensor und einem Safe-Drive™ Retractor zum Einsetzen und Entfernen des Sensors. Der zweiteilige Retractor kann separat an einem sauberen Ort aufbewahrt werden, und alle installierten PR-23-SD-Sensoren können mit demselben Werkzeug eingesetzt und entfernt werden.

Abbildung 11.1 Das Safe-Drive™ -System: Absperrventil, PR-23-SD-Sensor, Retractor

11.2 Spezifikationen

Brechungsindexbereich: Gesamter Bereich $n_D 1,3200-1,5300$ (entspricht

heiβem Wasser – 100 Brix)

Genauigkeit: Brechungsindex $n_D \pm 0,0002$ (entspricht nor-

malerweise ± 0,1 Gew.%)

Reproduzierbarkeit und Stabilität entspre-

chen der Genauigkeit

Ansprechgeschwindigkeit: 1 s ungedämpft, Dämpfungszeit wählbar bis

zu 5 Min.

Kalibrierung: Mit zertifizierten Brechungsindex-Standard-

lösungen (Cargill) über den gesamten Bereich

von n_D 1,3200-1,5300

CORE-Optik: Keine mechanischen Einstellungen (US Patent

No.US6067151)

Digitale Messung: 3648 pixel CCD-Element

Lichtquelle: Leuchtdiode (LED) 589 nm Wellenlänge, Natri-

umlicht

Temperatursensor: Eingebauter Pt-1000

Temperaturkompensation: Automatisch, digitale Kompensation
Geräte-Verifizierung: Mit zertifizierten Brechungsindex-Flüssigkeiten und gemäß dem von Vaisala doku-

mentiertem Verfahren

Umgebungstemperatur: Sensor: max. 45 °C (113 °F), min. -20 °C (-4

°F); Messumformer: max. 50 °C (122 °F),

min. 0 °C (32 °F) (Patent angemeldet)

SAFE-DRIVE™ SENSOR PR-23-SD UND ABSPERRVENTIL SDI-23

Absperrventilanschluss: Safe-Drive™ Flansch DN 40 PN25 (Patent

angemeldet)

Prozessdruck: Statischer Druck bis zu 20 bar (300 psi),

Betriebsdruck bis zu 10 bar (150 psi)

Prozesstemperatur: -20 °C-170 °C (-4 °F-340 °F)

Prozessberührende Teile, SAF 2205, Duplex-Edelstahl SS 2377, Standard: Werkstoff-Nr. 1.4462, UNS S31803 Prisma Spinel, Prismadichtungen MTF (Modified

Teflon)

Sensor-Schutzklasse: IP67, Nema 4X

Absperrventil SAF 2205, Duplex-Edelstahl SS 2377,

prozessberührende Teile: Werkstoff Nr. 1.4462, UNS S31803, AISI 316

L, Flanschdichtung Viton®, Bronze-Teflon® -Lippendichtung und ELGILOY, AISI 301 Fe-

dern

Absperrventil Durch Schweißen an Rohrgrößen von: Prozessanschluss: 2"-24", für vertikale und horizontale Rohr-

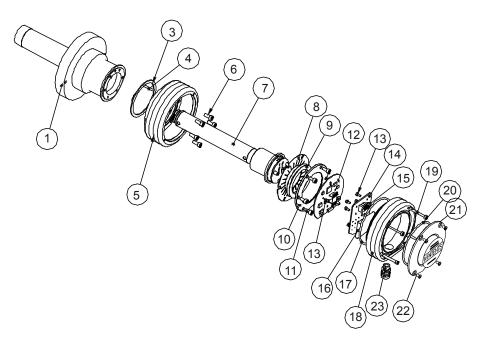
leitungen

11 Safe-Drive™ 167

Prismenreinigung: Auswechselbare Dampfwaschdüse mit Rück-

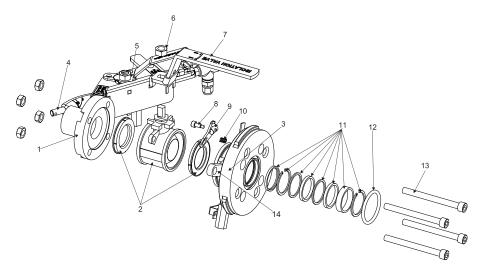
schlag ventilen

Sensor- und Absperrventilgewicht: 10,5 kg (23 lbs)


 $\begin{array}{l} \textbf{SAFE-DRIVE}^{\text{\tiny{IM}}} \ \textbf{RETRACTOR} \\ \textbf{SDR-23} \end{array}$

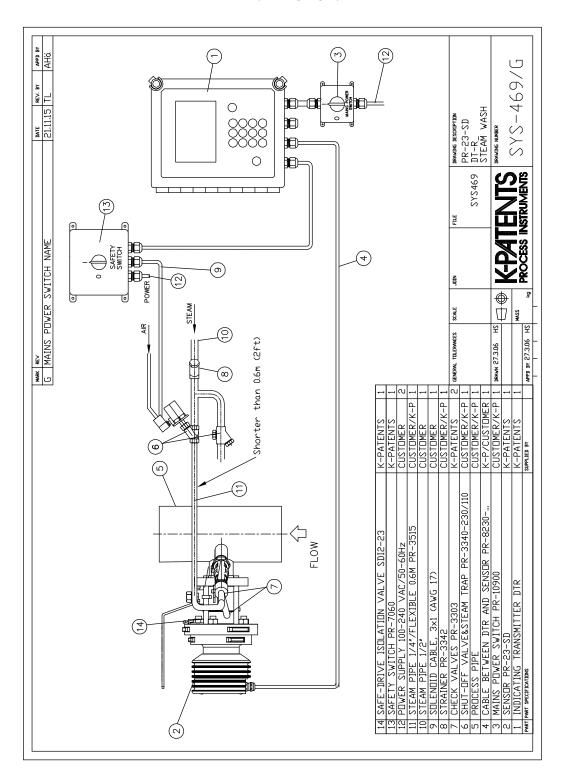
(Patent angemeldet)

Retractorgewicht: 7,7 kg (17 lbs)


11.3 Teileliste

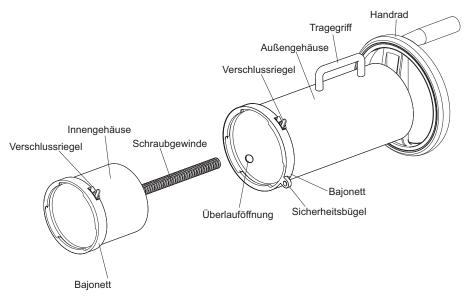
11.3.1 PR-23-SD Sensor

Art.	Stck	Teile-Nr.	Beschreibung	Art.	Stck	Teile-Nr.	Beschreibung
1 2	1	PR-10015	PR-23-SD Sensorkopf Safe-Drive™ Flansch	11 12 13	6 1	PR-10101	Schraube M5x10 DIN 912 A2 Sensor Processor Platine
3 4 5 6 7 8	1 1 1 6 1	PR-10005 PR-10022 PR-9011	Termische Isolierung PTFE Ausrichtungsstift PR-23 Basis Schraube M5x10 DIN 912 A2 PR-23-P Core Optik Wärmeableiter	14 15 16 17 18 19	8 1 1 1 1 4	PR-10300 PR-9108 PR-10000	Schraube M3x5 DIN 7380 A4 Bus Terminator Platine O-Ring Dichtung 24x2 Trockner für PR-23 O-Ring Dichtung 89.5x3 PR-23 Gehäuse Schraube M4x30 DIN 912 A4
* 9 10	1 2 1	PR-9010	Tellerfeder Satz Tellerfeder Tellerfeder Halter	20 21 22 23	1 1 4 1	PR-10002	O-Ring Dichtung 82x3 PR-23-SD Endplatte mit Typenschild Schraube M4x8 DIN 964 A4 Kabelverschraubung M16x1.5


11.3.2 Safe-Drive™ -Absperrventil

Art.	Stck	Teile-Nr.	Beschreibung	Art.	Stck	Teile-Nr.	Beschreibung
1	1	PR-11000	SDI Flansch und Düse	6	1		M12 Mutter A4
			Anschweißstück SAF 2205	7	1		SDI Absperrventilgriff
*	1	PR-11001	DN 40 Kugelhahn Baugruppe: Teile 2, 6, 7	8	1		Sicherheitsverschluss Schraube
2	1		DN 40 Kugelhahn	9	1		Sicherheitsverschluss
*	1	PR-11009	SDI Körper Baugruppe: Teile 3, 8, 9, 10	10	1		Feder 1.5x14x20 Lesjöfors no. 2371
3	1		SDI Körper	11	1	PR-11002	SDI Ventilpackungsset
4	1	PR-11023	SDI Dampfreinigungsdüse SN	12	1	PR-11003	O-Ring 50x5 EPDM
4	1	PR-11024	SDI Hochdruck-Wasserdüse WP	13	4	PR-11008	DIN 912 M10 x 110 Schraube+Mutter
5	1	PR-11015	SDI Kugelhahn (Düse) 3/8	14	1	PR-11026	Verriegelungsbügel für Absperrventil

11 Safe-Drive™ 169


11.3.3 Teile des Safe-Drive™ Dampfreinigungssystems

170 PR-23 Betriebsanleitung

11.3.4 Safe-Drive™ Retractor

Der Safe-Drive™ Retractor besteht aus Innengehäuse und Außengehäuse. Das Innengehäuse ist mit Hilfe einer Bajonettmontage am Sensorflansch angebracht. Das Außengehäuse ist mit Hilfe einer Bajonettmontage am Absperrventilgehäuse angebracht. Wenn das Handrad gedreht wird, bewegt sich das Innengehäuse am Schraubgewinde entlang innerhalb des Außengehäuses.

Abbildung 11.2 Der Safe-Drive™ Retractor

11.4 Montage

Eine Standardlieferung des Safe-Drive™ -Systems umfasst einen Safe Safe-Drive™ -Sensor (PR-23-SD) mit einem DTR-Messumformer, ein Safe-Drive™ -Absperrventil zum Verschweißen mit dem Rohr des Kunden und einen Safe-Drive™ Retractor zum Einsetzen und Entfernen von Sensoren. Für genaues Schneiden und Schweißen ist auch ein Aufkleber für die Schweißführung enthalten.

Bei einer Sonderbestellung kann das Safe-Drive™ -Absperrventil auch im Werk von Vaisala an ein Rohr mit geeigneter Länge geschweißt werden, das später vor Ort Teil der Rohrleitungen sein soll.

Achtung! Ablagerungsentfernung in Grünlaugen-Handlingsystemen: Stellen Sie sicher, dass die Materialien vom Sensor und der Waschdüse für die Chemikalien zur Ablagerungsentfernung geeignet sind.

11 Safe-Drive™ 171

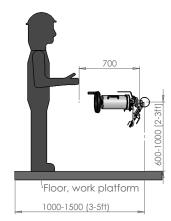


Abbildung 11.3 Montageort wählen

Das Safe-Drive™ -System basiert auf einer vertikal oder horizontal montierten Rohrleitung. Denken Sie bei der Auswahl des Montageorts daran, dass Sie in der Lage sein müssen, den Retractor mit Sensor darin über das Absperrventil und von ihm weg zu heben, um Sensoren einzusetzen und zu entfernen.

Side view [10.71] 272 [11.6] 295

Abbildung 11.4 Montage an einem vertikalen Rohr

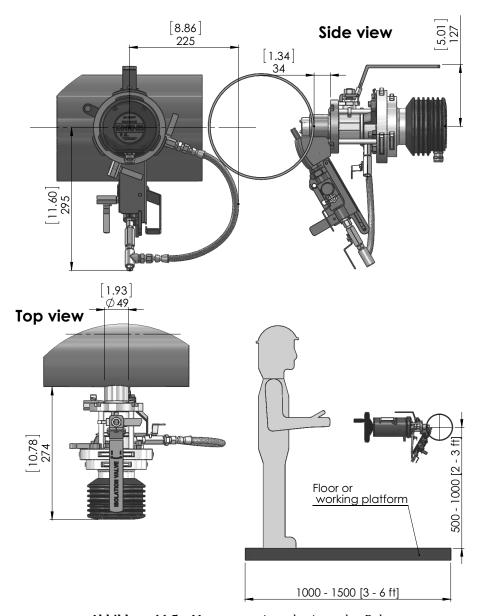


Abbildung 11.5 Montage an einem horizontalen Rohr

11.4.1 Schweißen des Absperrventils an das Rohr

Für das Safe Drive™-Absperrventil werden zwei Löcher – 50 mm (2") und 25 mm (1") – in das Rohr gebohrt und dann wird die Brücke zwischen den Löchern entfernt. Um bei der korrekten Platzierung der Löcher zu helfen, liefert Vaisala mit dem Ventil einen Aufkleber mit Installationsanleitung (siehe Abbildung 11.6).

Schweißschritte (siehe Abbildung 11.7 oder Abbildung 11.8):

 Reinigen Sie die Oberfläche des Rohres um den Installationsbereich und bringen Sie den Aufkleber auf dem Rohr an. Stellen Sie sicher, dass die Durchflussmarkierung parallel zum Rohr liegt und in die richtige Strömungsrichtung zeigt.

- 2. Demontieren Sie für das Schweißen das Absperrventil ab, um eine thermischen Schädigung der Absperrventildichtung zu vermeiden.
- 3. Bohren Sie Löcher von 50mm (2") und 25mm (1") in das Rohr und schneiden Sie das Metall zwischen den Löchern heraus.
- 4. Schweißen Sie das Absperrventil gemäß MTG472 oder MTG2149 (Abbildung 11.7 oder Abbildung 11.8)
- 5. Bringen Sie das Absperrventil wieder an. Hinweis! Der Griff des Absperrventils und der große Bajonettzahn müssen oben sein.
- 6. Ziehen Sie die vier M10-Muttern mit dem richtigen Drehmoment an.

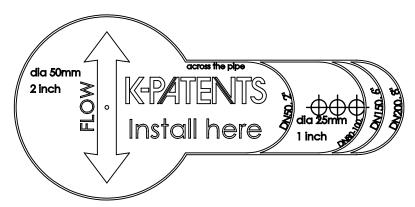
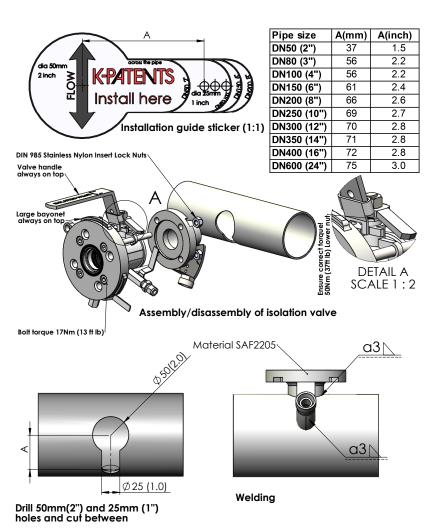
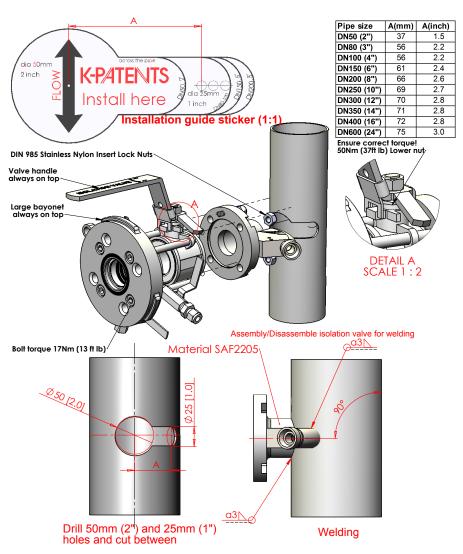




Abbildung 11.6 Aufkleber mit Installationsanleitung

174 PR-23 Betriebsanleitung

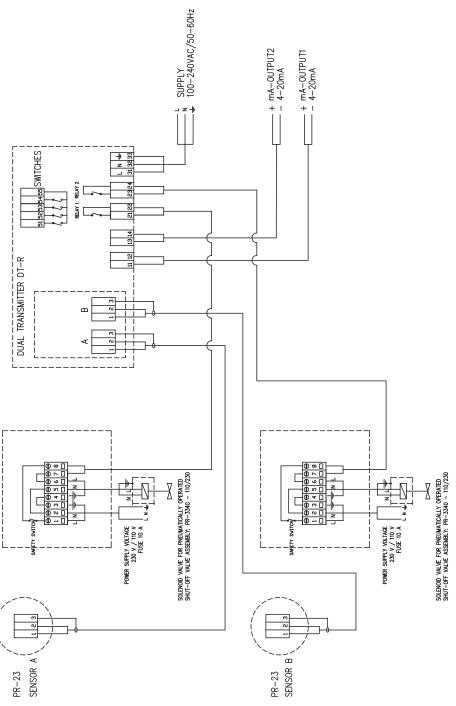


Abbildung 11.7 Schweißen des Safe-Drive™ -Absperrventils an ein horizontales Rohr

Abbildung 11.8 Schweißen des Safe-Drive™ -Absperrventils an ein vertikales Rohr

11.4.2 Verkabelung

Abbildung 11.9 Verkabelung des PR-23-SD-Systems

11.4.3 Dampfleitungen für SDI2 (z.B. schwache Lauge und Schwarzlauge)

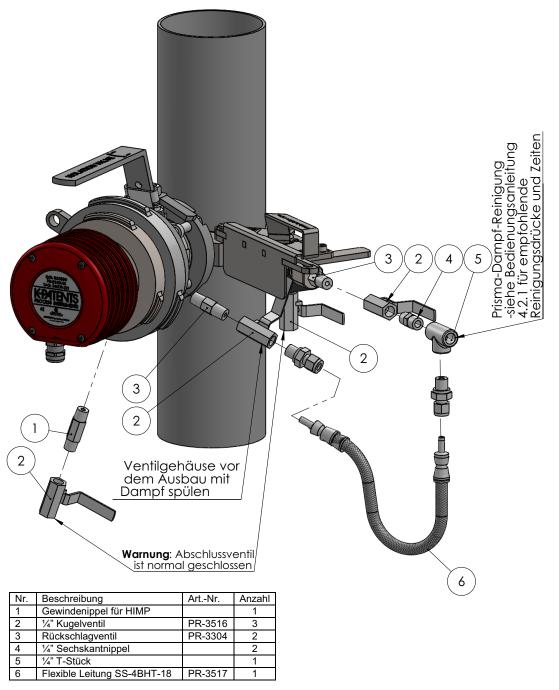
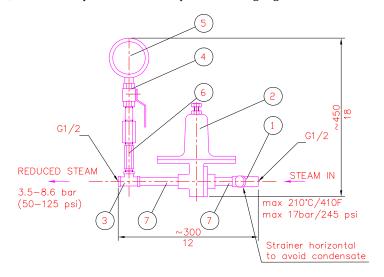



Abbildung 11.10 Montage Dampfreinigung an Absperrventil

Bei übermäßigem Druck in Dampfsystemen: Wenn der Dampfdruck den maximalen Druckunterschied überschreitet, muss ein Druckminderventil PR-3341-J installiert werden, um den Dampfdruck auf eine optimale Auslegung zu reduzieren.

DIMENSIONS: 300x450x140 (12x18x5.5)

7	SEAMLESS PIPE NIPPLE 1/2"	AISI 316	2
6	HEX VALVE SYPHOUS		1
5	PRESSURE METER		1
4	BALL VALVE		1
3	T-COUPLING 1/2"		1
2	PRESSURE REGULATOR		1
1	STRAINER		1

Abbildung 11.11 Druckminderventil PR-3341-J

Beachten Sie die Ausrichtung des Filters.

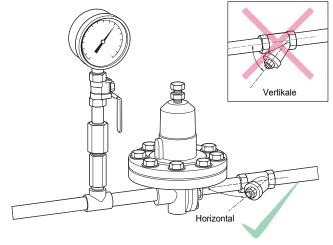
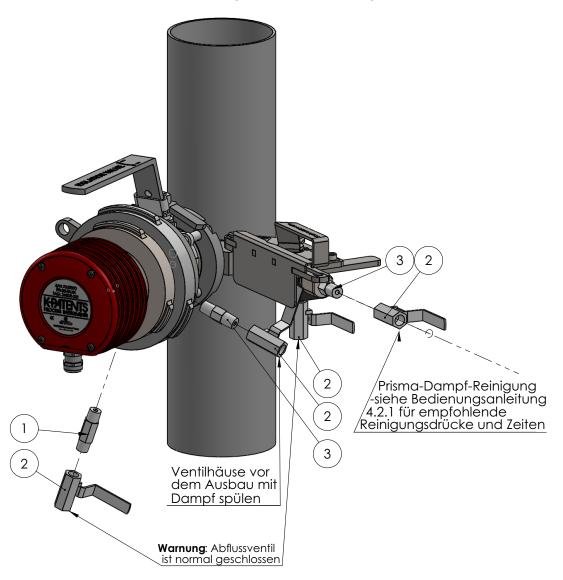



Abbildung 11.12 Sieb horizontal installieren

11.4.4 Hochdruckwasserleitung für SDI2 (z.B. Grünlauge)

Nr.	Beschreibung	Art. Nr.	Anzahl
1	1 Gewindenippel		1
2	1/4" Kugelventil	PR-3516	4
3	Rückschlaaventil	PR-3304	2

Abbildung 11.13 Montage Hochdruckwasserreinigung an Absperrventil

180 PR-23 Betriebsanleitung

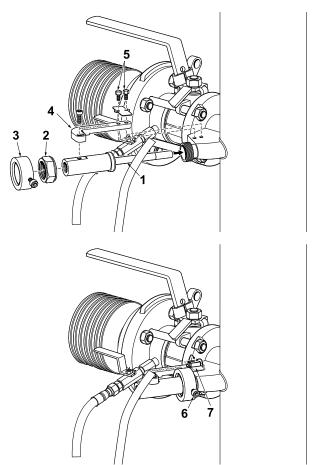
11.4.5 Wasserverbrauch der Hochdruckwasserreinigung

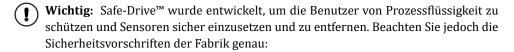
	Wasser		
Druck	10 s Waschung	10 s Waschung alle 15 min	Düsen Durchfluss
17 bar (250 psi)	1.5 l (0.40 gal)	6 I (1.6 gal)/h	0.15 l (0.04 gal)/s
34 bar (500 psi)	2.2 l (0.58 gal)	8.8 l (2.3 gal)/h	0.22 I (0.06 gal)/s
41 bar (600 psi)	2.5 l (0.66 gal)	10 l (2.6 gal)/h	0.25 l (0.07 gal)/s

Tabelle 11.1 Düsendurchfluss bei verschiedenen Drücken mit 2 mm (0,080 Zoll) Düsenöffnungsdurchmesser

11.4.6 Nicht ein- und ausfahrbare Waschdüse SDI2-23-WPR / WPN-XS

Die nicht ein- und ausfahrbare Hochdruck-Wasserwaschdüse SDI2-23-WPR / WPN-XS muss eingesetzt werden, bevor die Leitung mit Druck beaufschlagt wird. Sie darf nicht entfernt werden, während die Leitung unter Druck steht.



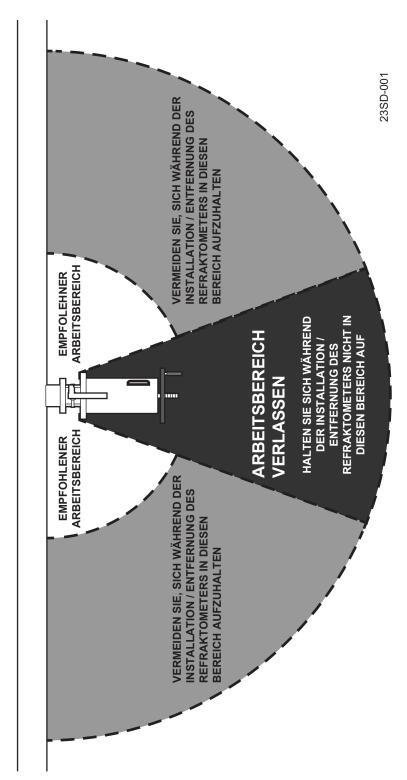

Abbildung 11.14 Installation der nicht ein- und ausfahrbaren Reinigungsdüse

11.5 Sicheres Einsetzen und Entfernen von Sensoren

Wichtig: Diese Anweisungen sind für Safe-Drive™ Generation 2.1. Wenn Sie über Generation 1 oder Generation 2 von Safe-Drive™ verfügen, erwägen sie das Upgrade auf 2.1. Das Upgrade von Generation 1 erfordert ein Herunterfahren des Systems, das Upgrade von Generation 2 kann jeder Zeit durchgeführt werden. Siehe http://www.kpatents.com/support/product-upgrades-and-notifications/documentation-upgrade-for-safe-drive für mehr Informationen, wie man ein Upgrade durchführt.

Achtung! Verwenden Sie zum Einsetzen und Entfernen von Sensoren immer den Safe Drive™Retractor! Das sichere Einsetzen und Entfernen von Sensoren kann nur gewährleistet werden, wenn das Retractor-Werkzeug verwendet und diese Anleitung sorgfältig eingehalten wird. Das Entfernen eines Sensors ohne Retractor-Werkzeug kann zu einer lebensbedrohlichen Situation führen, wenn noch Druck in der Leitung ist. Es entstehen auch leicht Schäden an der Lippendichtung, wenn der Retractor nicht verwendet wird.

- Tragen Sie langärmlige Schutzkleidung, da die Prozessflüssigkeit heiß und/oder ätzend sein kann.
- · Verwenden Sie Schutzhandschuhe.
- Verwenden Sie eine Schutzbrille.
- Verwenden Sie einen Gehörschutz.
- Tragen Sie einen Schutzhelm.
- Verwenden Sie ein Gesichtsschutzvisier.
- Tragen Sie Sicherheitsschuhe mit Stahlkappen.
- Informieren Sie sich, wo sich die nächste Notdusche und Augenspülstation befinden, bevor Sie mit der Arbeit beginnen.
- Bedienen Sie das System niemals alleine: Es wird empfohlen, dass ein Bediener die Anweisungen liest und den zweiten Bediener beim Durchführen des Schrittes anleitet.



Achtung! Die Ablaufventile (siehe 11.10 und 11.13) sollten immer geschlossen sein, wenn nichts anderes angegeben ist. Werden die Ventile offen gelassen, tritt durch sie Prozessflüssigkeit aus.

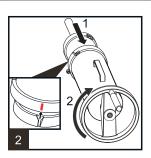
182 PR-23 Betriebsanleitung

Abbildung 11.15 Der empfohlene Arbeitsbereich ist an der Seite des Safe-Drive™.

11.5.1 Einsetzen eines Sensors

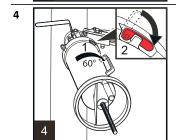
Vor dem Start

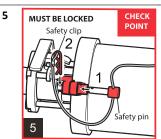
• Prüfen, ob Dichtungen und Dichtflächen sauber und unbeschädigt sind


Sensorkabeldurchführung entfernen und Innengehäuse entsperren

1

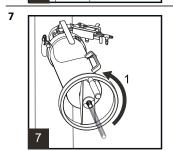
- Setzen Sie den Sensor in das Innengehäuse ein. Stellen Sie sicher, dass die Sensorkabeldurchführung abgenommen wurde. Bringen Sie den Bajonettverschluss in Übereinstimmung mit dem Sensorflansch, so dass der Riegel leicht nach links oben steht und die Sensorkabeldurchführung gerade nach unten zeigt.
- Wenn der Sensorflansch mit dem Boden des Innengehäuses bündig ist, drehen Sie das Innengehäuse im Uhrzeigersinn um 60 Grad, damit es am Flansch einrastet.
- 3. Drücken Sie auf den Verschlussriegel, um die Verbindung zu sichern.


2


- 1. Montieren Sie das Außengehäuse über das Innengehäuse. Um die Gehäuse in Übereinstimmung zu bringen, stellen Sie sicher, dass die Schiene am Innengehäuse mit der Nut am Außengehäuse übereinstimmt. Die Verriegelung des Innengehäuses sollte etwas nach rechts oben und der Griff des Außengehäuses nach oben zeigen.
- Drehen Sie das Handrad im Uhrzeigersinn bis zum Anschlag, um das Innengehäuse mit dem Sensor in das Außengehäuse zu ziehen.

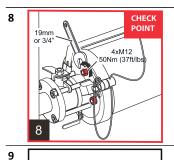
- 1. Der Sensor sollte sich nun im Retraktor befinden, und etwa 140 mm (5,5") des Schraubgewindes sollten aus der Mitte des Rades hervorstehen.
- 2. Lösen Sie den Riegel des Außengehäuses.
- Halten Sie das Handrad und den Griff gut fest und heben Sie den Retraktor (mit Sensor) über den Flansch des Absperrventils. Halten Sie den Griff nach oben.

- Drehen Sie das Außengehäuse um 60° im Uhrzeigersinn, um den Bajonettverschluss zu sichern.
- 2. Sichern Sie den Riegel des Außengehäuses.



- 1. Setzen Sie den Sicherungsstift ein.
- 2. Sichern Sie den Sicherungsstift mit dem Sicherungsclip.

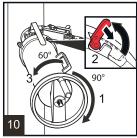
FAHREN SIE ERST DANN FORT, NACHDEM SIE DIESEN SCHRITT ABGESCHLOSSEN HABEN!


- Schließen Sie das Ausblas-Kugelventil unter dem Absperrventil.
- Heben Sie die Sicherungsplatte des Absperrventils nach oben.
- Öffnen Sie das Absperrventil, indem Sie den Ventilgriff um 90° drehen. Das Ventil ist geöffnet, wenn der Kugelhahngriff parallel zu Retraktor und Sensor steht.

Jetzt kann der Sensor in den Prozess eingesetzt werden.


 Drehen Sie das Handrad bis zum Anschlag gegen den Uhrzeigersinn, d. h. bis der Sensorflansch mit dem Absperrventil verbunden ist und nur das Ende des Schraubgewindes sichtbar ist.

Warnung! Bei Feststellung von Leckage sofort zum vorherigen Schritt zurückkehren. Das Einsetzen darf erst fortgesetzt werden, wenn der Grund für die Leckage gefunden und behoben wurde.


Setzen Sie die vier M12-Muttern auf die Schrauben, mit denen der Sensor am Absperrventil befestigt wird, und drehen Sie sie mit einem 19-mm- oder %"-Schraubenschlüssel fest.

Wichtig: Ziehen Sie die Muttern nicht zu stark an: Stellen Sie das Drehmoment auf 50 Nm (37 ft/lbs) ein. FAHREN SIE ERST DANN FORT, NACHDEM SIE DIESEN SCHRITT ABGESCHLOSSEN HABEN!

- 1. Entfernen Sie den Sicherungsclip.
- 2. Entfernen Sie den Sicherungsstift.

10

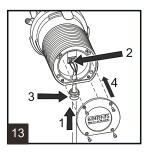
1. Drehen Sie das Rad um 90° im Uhrzeigersinn.

- 2. Öffnen Sie den Verschlussriegel des Außengehäuses.
- 3. Drehen Sie das Außengehäuse um 60° gegen den Uhrzeigersinn.

11

1. Drehen Sie das Handrad gegen den Uhrzeigersinn, um es vom Gewinde zu lösen.

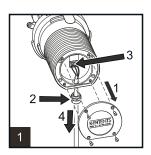
2. Heben Sie das Außengehäuse ab.


12

1. Heben Sie zum Entsperren den Riegel des Innengehäuses an.

- 2. Drehen Sie das Gehäuse um 60° gegen den Uhrzeigersinn, um es vom Flansch zu lösen.
- 3. Heben Sie das Innengehäuse vom Sensorkopf ab.

13


Schalten Sie das DTR aus. Schließen Sie die Sensorleitung zum DTR an.

- Ziehen Sie das Verbindungskabel durch die Kabeldurchführung und in den Sensor.
- 2. Schließen Sie das Verbindungskabel zum Sensor an.
- Ziehen Sie die Kabeldurchführung auf dem Sensor fest.
- 4. Bringen Sie das Typenschild am Sensor an und schrauben Sie es fest.

Schalten Sie die Stromzufuhr zum DTR ein, um das Safe-Drive™-System mit Energie zu versorgen. Öffnen Sie das Spülventil.

11.5.2 Entfernen eines Sensors

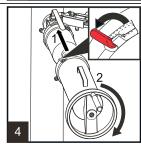
1

Schalten Sie das DTR aus, um die Stromversorgung vom Sensor abzuschalten. Schließen Sie das Spülventil.

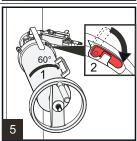
- 1. Schrauben Sie das Sensor-Typenschild ab und entfernen Sie es.
- 2. Lösen Sie die Kabelverschraubung.
- 3. Schrauben Sie die Kabel ab.
- 4. Entfernen Sie das Sensorkabel und die Kabelverschraubung.

Hinweis: Wenn ein anderer Inline-Sensor mit dem gleichen DTR verbunden ist, trennen Sie das lose Kabel vom DTR und schalten Sie die Stromzufuhr wieder ein.

2


 Heben Sie zum Entsperren den Riegel des Innengehäuses an. Heben Sie das Innengehäuse über den Sensorkopf. Die Verriegelung des Innengehäuses sollte etwas nach links zeigen.

3


- Drehen Sie das Innengehäuse um 60° im Uhrzeigersinn, damit es am Flansch einrastet.
- 2. Sichern Sie den Riegel des Innengehäuses.

4

- Öffnen Sie den Verschlussriegel des Außengehäuses. Fassen Sie das Außengehäuse mit einer Hand am Griff und der anderen Hand am Rad. Montieren Sie das Außengehäuse über das Innengehäuse.
- Drehen Sie das Handrad im Uhrzeigersinn, damit sich das Gewinde des Innengehäuses durch das Handrad bewegt.

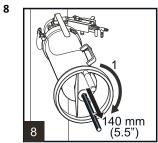
5

- Drehen Sie das Außengehäuse um 60° im Uhrzeigersinn, um den Bajonettverschluss zu sichern.
- 2. Sichern Sie den Riegel des Außengehäuses.

6 MUST BE LOCKED! CHECK POINT


Safety clip

Safety pin


1. Setzen Sie den Sicherungsstift ein.

2. Sichern Sie den Sicherungsstift mit dem Sicherungsclip.

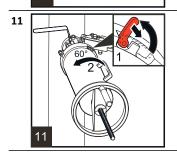
FAHREN SIE ERST DANN FORT, NACHDEM SIE DIESEN SCHRITT ABGESCHLOSSEN HABEN!

Lösen Sie mit einem 19-mm- oder %"-Schraubenschlüssel die vier M12-Muttern von den Schrauben, mit denen der Sensor am Absperrventil befestigt wird.

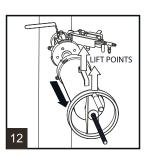
 Um den Sensor aus dem Prozess zu entfernen, drehen Sie das Handrad im Uhrzeigersinn bis zum Anschlag. In dieser Stufe sollten etwa 140 mm (5,5") des Gewindes aus der Mitte des Rades herausstehen.

Warnung! Bei Feststellung von Leckage sofort zum vorherigen Schritt zurückkehren. Das Entfernen darf erst fortgesetzt werden, wenn der Grund für die Leckage gefunden und behoben wurde.

9


- 1. Heben Sie die Sicherungsplatte des Absperrventils nach oben.
- Schließen Sie das Absperrventil durch Drehen des Griffs um 90°.Wichtig: Das Absperrventil ist richtig geschlossen, wenn der Griff vom Sensor weg zeigt und die Sicherungsplatte nach unten über den Griff fällt.
- Öffnen Sie das Ausblasventil unter dem Absperrventil, um den Kasten zu reinigen und jegliche Prozessflüssigkeit im Inneren des Absperrventils zu beseitigen. Warnung! Es wird etwas Prozessflüssigkeit durch den kleinen Kugelhahn austreten; Vorsicht vor Spritzern!

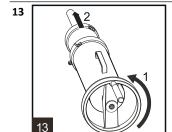
FAHREN SIE ERST DANN FORT, NACHDEM SIE DIESEN SCHRITT ABGESCHLOSSEN HABEN!


10

- 1. Entfernen Sie den Sicherungsclip.
- 2. Ziehen Sie den Sicherungsstift heraus.

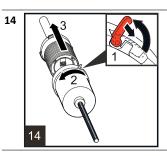
- Heben Sie den offenen Verschlussriegel des Außengehäuses an.
- 2. Drehen Sie das Außengehäuse um 60° gegen den Uhrzeigersinn, bis der Griff oben ist.

12



Halten Sie das Handrad und den Griff gut fest und ziehen Sie den Retraktor mit dem Sensor darin heraus. Warnung! Das Werkzeug muss gut festgehalten werden, da die Kombination aus Werkzeug und Sensor deutlich schwerer ist als nur der Retraktor.

Hinweis: Um das Absperrventil zu sichern, nachdem das Safe-Drive™-Werkzeug mit dem Sensor entfernt wurde, können Sie einen Standard-ANSI 1,5" 105 lbs Blindflansch am Absperrventil mit ½"-Schrauben und -Muttern (M12) anschrauben.


Der Absperrventilgriff kann mit einer Verriegelung versehen werden.

Warnung! Der Sensorkopf ist heiß und kann mit Lauge bedeckt sein. Es wird empfohlen, die Sensorspitze und das Absperrventil mit heißem Wasser abzuspülen.

Setzen Sie den Retraktor mit Sensor auf einen Tisch oder eine ähnliche erhöhte Oberfläche, so dass das Handrad genug Platz zum Drehen hat.

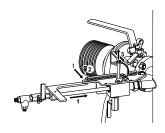
- Drehen Sie das Handrad gegen den Uhrzeigersinn, um es vom Gewinde zu lösen, d. h. das Außengehäuse ist nicht mehr mit den Teilen im Inneren verbunden.
- 2. Ziehen Sie das Außengehäuse ab.

1. Öffnen Sie den Riegel des Innengehäuses.

- Halten Sie den Sensor mit einer Hand gut fest und drehen Sie das Innengehäuse gegen den Uhrzeigersinn, während Sie mit der anderen Hand die Verriegelung zwischen Innengehäuse und Sensor lösen.
- 3. Ziehen Sie den Sensor ab.

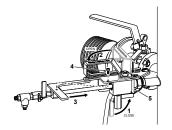
11.6 Einsetzen und Entfernen der Reinigungsdüse

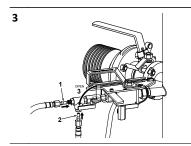
Achtung! Die nicht ein- und ausfahrbare Waschdüse SDI2-23-WPR / WPN-XS für Hochdruckwasser kann nur bei leerem Prozessrohr eingesetzt oder entfernt werden. Die nachstehenden Anweisungen zum Einsetzen und Einfahren gelten nur für die Waschdüsen SDI2-23-SN2 für Dampf und SDI2-23-WP2 für Hochdruckwasser. Zum Einbau der nicht ein- und ausfahrbaren Waschdüse siehe Abschnitt 11.4.6.


11.6.1 Einsetzen der Reinigungsdüse

Überprüfen Sie vor der Installation der Reinigungsdüse die Düse und das Ventil. Für alle Gewindeanschlüsse Gewindeabdichtband verwenden.

Achtung! Vor allen Arbeiten an der Reinigungsdüse immer das Hauptdampfventil schließen.


1


Überprüfen Sie vor der Installation der Reinigungsdüse die Düse und das Ventil. Verwenden Sie für alle Gewindeanschlüsse Gewindeabdichtband.

- Setzen Sie die Düse in das Absperrventil
 (1) ein.
- Bringen Sie die Düse mit einer M5x10-Schraube (2) und einem
 5-mm-Innensechskantschlüssel an der Düsenführung an.
- 3. Entfernen Sie den Sicherungsstift (3).

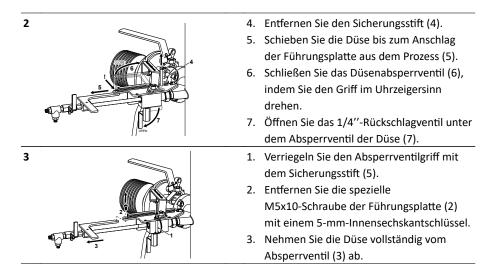
2

- 1. Schließen Sie das 1/4"-Rückschlagventil unter dem Absperrventil der Düse (1).
- 2. Öffnen Sie das Absperrventil (2) durch Drehen des Griffs gegen den Uhrzeigersinn.
- 3. Schieben Sie die Düse in den Prozess (3).
- 4. Bringen Sie die Düse mit einer M5x10-Schraube (2) und einem 5-mm-Innensechskantschlüssel an der Düsenführung an.
- 5. Verriegeln Sie den Absperrventilgriff mit dem Sicherungsstift (5).

- 1. 1.1 DAMPF: Schließen Sie die Dampfleitung und die bündige flexible Leitung des Sensors am T-Stück der Düse an (1, 2).
 - 1.2 WASSER: Schließen Sie die Wasserleitung an das 1/4"-Ventil (1, 2) an.
- 2. Öffnen Sie das Düsenventil (3).

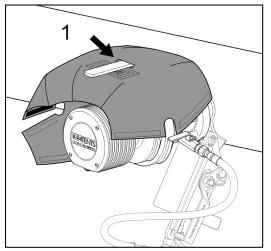
11.6.2 Entfernen der Reinigungsdüse

Achtung! Vor allen Arbeiten an der Reinigungsdüse immer das Hauptdampfventil schließen.

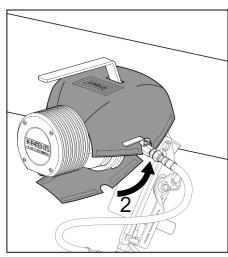


WARNUNG! Stellen Sie unbedingt sicher, dass die Dampf- oder Wasserzufuhr abgeschaltet ist, bevor Sie beginnen, die Düse zu entfernen.

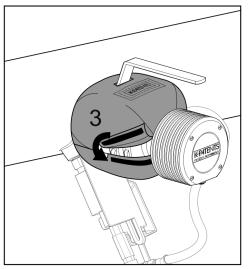
- 1. Schließen Sie das Düsenventil (1).
- 2.
 - 2.1 DAMPF Entfernen Sie die Dampfzufuhrleitung (2) und die bündige flexible Leitung des Sensors (2) vom T-Stück der Düse.
 - 2.2 WASSER Entfernen Sie die Wasserzufuhrleitung (2) von der Düse.
- 3. Entfernen Sie die spezielle M5x10-Düsenführungs-Sicherungsschraube (3) mit einem

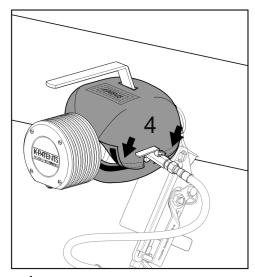

5-mm-Innensechskantschlüssel.

Seien Sie vorsichtig, da durch den Prozessdruck die Düse aus dem Prozess herausgedrückt werden kann!



11.7 Thermische Abdeckung für PR-23-SD


Die Thermoabdeckung verhindert den Wärmefluss zwischen Prozess und Umgebung. Es hilft, die Sensorspitze und die Prismenoberfläche auf die Prozesstemperatur zu halten und kann Belagsbildung auf dem Prisma reduzieren. Verwenden Sie eine thermische Abdeckung, wenn der Temperaturunterschied zwischen dem Prozess und der Umgebung mehr als 30 °C beträgt oder wenn die Prozesstemperatur über 60 °C liegt.


 Führen Sie den SD-Absperrventilgriff durch die Öffnung in der Thermoabdeckung, und achten Sie dabei darauf, dass das Etikett zu Ihnen zeigt.

2. Die Abdeckung unter und um das SD-Ventilgehäuse wickeln und die Ausschnitte mit dem Ablassventil ausrichten.

3. Schließen Sie mit Klettbändern, zuerst die einzelne Verbindung auf der linken Seite.

4. Schließen Sie anschließlich die beiden Klettverbindungen auf der rechten Seite.

Abbildung 11.16 Thermoabdeckung anbringen

Um die Thermoabdeckung zu entfernen, öffnen Sie zunächst die beiden Klettverschlüsse rechts. Öffnen Sie dann den Klettverschluss auf der linken Seite, wickeln Sie die Abdeckung unter dem Sensor aus und entfernen Sie die Abdeckung.

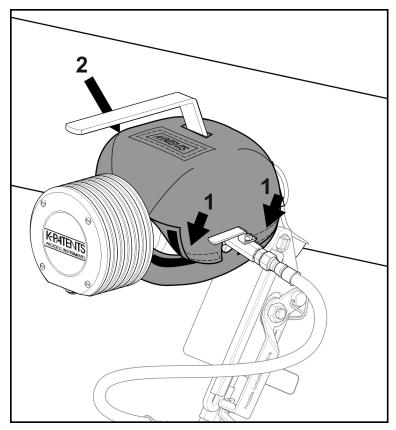


Abbildung 11.17 Entfernen der thermischen Abdeckung

11.8 Verschließen des SD-Systems

Ein nicht länger verwendeter Safe-Drive $^{\text{\tiny M}}$ -Anschluss kann mit Blindstopfen verschlossen werden.

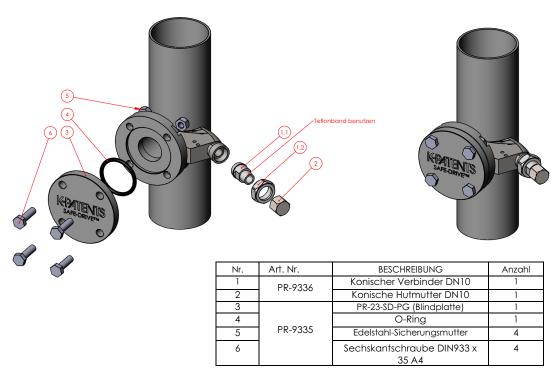


Abbildung 11.18 SDI Montageflansch-Steckersystem

11.9 Identifizieren Sie Ihre Refraktometergeneration

Diese Anweisungen sind für **Safe-Drive™ Generation 2.1**. Wenn Sie die Anleitung online heruntergeladen oder ein Handbuch als Ersatzteil bestellt haben, ist es möglich, dass Ihr Safe-Drive™ -System einer anderen (älteren) Generation entspricht und andere Anweisungen benötigt werden. Vaisala empfiehlt dringend, das System auf Generation 2.1 zu aktualisieren. Weitere Informationen finden Sie unter http://www.kpatents.com/support/product-upgrades-and-notifications/documentation-upgrade-for-safe-drive.

Der erste Schritt, um nach der Generationsinformation zu suchen, ist sich den Retraktor anzuschauen. Wenn Ihr Retraktor die Generation 2 ist, hat der Griff den Code G2. Wenn Ihr Retraktor Generation 2.1 ist, hat der Griff den Code G2.1 (siehe Abbildung 11.19). Der Unterschied zwischen den Generationen ist jedoch auch bei Betrachtung des Retraktors und des Absperrventils sichtbar, siehe Tabelle 11.2 auf Seite 196.

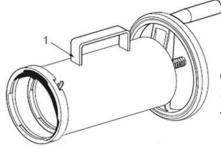
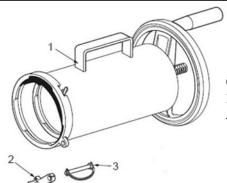
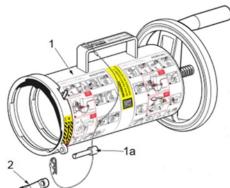




Abbildung 11.19 Markierungen am Retraktorgriff


196 PR-23 Betriebsanleitung

Generation 1 (2006-2014) Retraktor *ohne* Sicherheitsbügel. Absperrventil *ohne* Sicherheitsbügel.

Generation 2 (2014-2017) Retraktor *mit* Sicherheitsbügel. Absperrventil *mit* Sicherheitsbügel.

Generation 2.1 (2017-)

Retraktor *mit* Sicherheitsbügel und integriertem *Sichererungsclip und -stift*. Absperrventil *mit* Sicherheitsbügel.

Tabelle 11.2 Identifizieren der verschiedenen Safe-Drive™ Generationen

12 Ethernet-Anschluss, Spezifikation

Der Ethernet-Anschluss ermöglicht den Daten-Download von einem DTR zu einem Computer. Der Anschluss arbeitet direkt zwischen DTR und Computer und kann auch über einen Hub oder einen Switch, lokales Netzwerk (LAN), drahtloses Netzwerk (WLAN) oder Glasfaser-Ethernet hergestellt werden.

Jeder Computertyp (PC, Mac, PDA, Großrechner...) mit einem kompatiblen Netzwerkanschluss kann zum Downloaden der Daten vom DTR konfiguriert werden. In diesem Dokument finden Sie alle nötigen Angaben, um ein eigenes Kommunikationsprogramm für den Datendownload zu schreiben.

12.1 Kabel, Anforderungen und Anschluss

12.1.1 Ethernet-Kabel Spezifikation

Der DTR arbeitet mit einem Standard-Ethernet-Kabel (10/100BASE-T Cat 5e Kabel mit RJ45 Anschlüssen). Die maximale Kabellänge beträgt 100 m.

Der Ethernet-Anschluss ist ähnlich wie der eines Computers/PC:

Verwenden sie ein Crossover-Ethernet-Kabel um den DTR direkt an einen Computer anzuschließen (Abbildung 12.1). Wenn Sie den DTR an ein LAN (Lokales Netzwerk) über einen Wandanschluß anschließen möchten, nehmen Sie ein Straight-Through-Ethernetkabel (Abbildung 12.2).

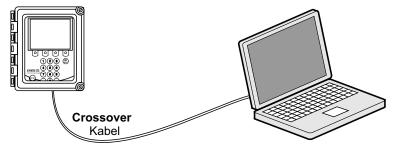


Abbildung 12.1 Anschließen des DTRs mit einem Computer

198 PR-23 Betriebsanleitung

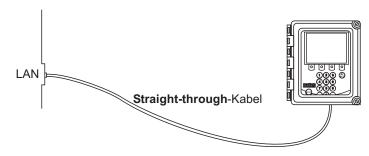


Abbildung 12.2 Anschließen des DTR mit einem LAN

Wenn sie den DTR an einen Hub oder Switch oder an einen WLAN-Accesspoint anschließen, sehen Sie bitte im entsprechenden Handbuch des Herstellers nach, um den korrekten Kabeltyp herauszufinden (Abbildungen 12.3 und 12.4).

Abbildung 12.3 Anschließen eines DTRs an einen Hub oder Switch

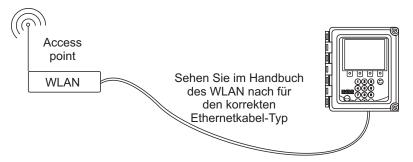
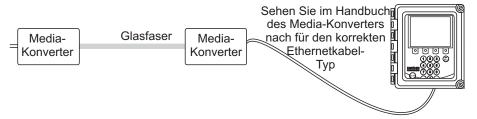
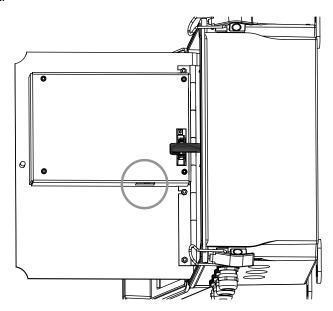



Abbildung 12.4 Anschließen des DTR an WLAN

Wenn Sie ein längeres Kabel benötigen oder in der Umgebung elektrische Störungen auftreten, benutzen Sie am besten ein Lichtwellenleiter-Ethernet mit Media-Konverter (Abbildung 12.5).


Abbildung 12.5 Verwendung eines Lichtwellenleiter-Ethernets

12.1.2 Anschließen des Ethernet-Kabels

Um ein Ethernet-Kabel an den DTR anzuschließen, öffnen Sie bitte die DTR-Gehäuseabdeckung, lösen Sie die Schraube der Frontplatte und öffnen Sie die Frontplatte. Der Ethernet-Anschluss befindet sich hinter der Frontplatte, siehe Abbildung 12.6. Stecken Sie ein Ende des entsprechenden Ethernet-Kabels in den Anschluss. Stecken Sie das andere Ende in ihren PC/LAN- oder Hub-/Schalter-/Accesspoint-Anschluss.

Achtung! Es ist möglich, das Ethernet-Kabel anzuschließen und abzuklemmen, während der DTR eingeschaltet ist. Zu ihrer eigenen Sicherheit empfehlen wie ihnen, das Gerät vom Netz zu trennen (indem Sie den Netzstecker herausziehen oder die Versorgung mit einem externen Netzschalter unterbrechen), bevor Sie die Frontplatte des DTR öffnen.

Abbildung 12.6 Ethernet-Anschluss auf der Unterseite der Frontplatte

Hinweis: Der DTR findet automatisch heraus, wie hoch die optimale Geschwindigkeit für den Anschluss sein muß und wählt dementsprechend entweder 1 Mbit/s oder 100 Mbit/s als Geschwindigkeit.

12.2 Anschluss-Einstellungen

12.2.1 IP-Einstellungen für den DTR

Der DTR verwendet ein IP-Protokoll für die Kommunikation über das Ethernet. Die **Werkseinstellung** für die IP-Adresse des DTR ist **192.168.23.254** (eine private Netzwerkadresse).

Wenn Sie den DTR nur an einen Stand-Alone Computer anschließen und es kein anderes Netzwerk gibt, muß die Werkseinstellung nicht geändert werden. Wenn Sie den

DTR allerdings an ein vorhandenes Netzwerk anschließen, muß die Adresse für dieses Netzwerk geändert werden. Wenn Sie Konflikte verhindern möchten, fragen Sie den Netzwerk-Administrator nach einer passenden IP-Adresse für den abgefragten DTR.

Die DTR-Adresse kann manuell im Kalibrierungs-Menü durch folgende Eingabe geändert werden: 5 KALIBRIERUNG – 2 AUSGÄNGE – 6 NETZWERK. Geben Sie die neue IP-Adresse ein und drücken Sie die Enter-Taste, um die Adresse zu ändern.

12.2.2 IP-Einstellungen für Stand-Alone-Computer

Wenn Sie einen Stand-Alone-Computer (der nicht in einem Netzwerk enthalten ist) mit einem Crossover-Kabel direkt an den DTR anschließen, ist es am einfachsten, die Netzwerkeinstellungen des Computers zu überprüfen und die DTR-Einstellungen damit in Übereinstimmung zu bringen.

Hinweis: Wenn das DTR in einem Firmennetzwerk betrieben wird, erfahren Sie vom Systemadministrator, wie Sie die DTR-Verbindung herstellen. Das Stand-Alone-Verfahren ist in diesem Fall eventuell nicht die beste Lösung.

Wenn Sie mit Windows (oder Mac OS X 10.3 oder neuer oder einer neueren Linux-Distribution) arbeiten und der Computer über die Standard-Netzwerkeinstellungen verfügt, ändern Sie die IP-Adresse zu 169.254.x.y, wobei x=1–254 und y=1–254, zum Beispiel 169.254.100.100 oder 169.254.123.1. Auf diese Weise wird die DTR-Adresse optimal mit der Adresse gekoppelt, die Ihr Computer automatisch für sich selbst erzeugt.

Im Zweifelsfall können Sie die Netzwerkeinstellungen Ihres Windows-Computers aufrufen, indem Sie das Befehlsfenster (Eingabeaufforderung) öffnen und den Befehl "ipconfig" in die Eingabeaufforderung eingeben (drücken Sie die Eingabetaste, um den Befehl einzugeben), siehe Abbildung 12.7 (bei Mac OS X und Linux wird der gleiche Befehl mit "ifconfig" bezeichnet). Als Ergebnis erhalten Sie die IP-Adresse Ihres Computers, so dass Sie den DTR-Wert entsprechend anpassen können; die Verbindung sollte immer funktionieren, wenn die ersten drei Zahlengruppen einander entsprechen und Sie nur die letzte Zahl ändern.

```
C:\WINDOWS\system32\cmd.exe

#icrosoft Vindows XP [Version 5.1.2688]

C:\Documents and Settings\mari.voipio\jpconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix :
 Autoconfiguration IP Address . : 169.254.178.55

Submet Hask . . . . . . : 235.255.8.8

Default Gatoway . . . . :

Ethernet adapter Vireless Network Connection:

Media State . . . . . : Hedia disconnected

C:\Documents and Settings\mari.voipio\_
```

Abbildung 12.7 Typische IP-Konfiguration für ein Stand-Alone-Laptop, wenn es mit einem DTR verbunden ist; das Wireless-System des Laptops (WLAN) ist ausgeschaltet

Hinweis: Möglicherweise müssen Sie das Crossover-Kabel anschließen und das DTR einschalten, bevor Ihr Computer eine IP-Adresse für die Ethernet-Verbindung erzeugt (auch ein Neustart des Computers kann erforderlich sein). Beachten Sie auch, dass die Verbindung nicht funktioniert, wenn der Computer und das DTR genau dieselbe IP-Adresse haben.

Hinweis: Bitte stellen Sie sicher, dass Ihr WLAN (drahtlose Netzwerkverbindung) nicht aktiv ist, wenn Sie die Verbindung zum DTR herstellen. Wenn das WLAN aktiv ist, funktioniert der Ethernet-Anschluss des Computers eventuell nicht wie erwartet.

Wenn Sie das DTR (und/oder der Computer) gemäß den obigen Anweisungen eingerichtet haben, können Sie damit fortfahren, die Verbindung wie in Abschnitt 12.3 beschrieben zu testen.

12.3 Testen des Ethernetanschlusses

Auf dem Ethernetanschluss innerhalb des DTR gibt es zwei Diagnose-LEDs. Die grüne LED zeigt an, daß der Anschluss physikalisch in Ordnung ist, d.h. daß beide Enden des Ethernet-Kabels eingesteckt sind. Die Geräte an jedem Ende sind eingeschaltet und es wurde das richtige Kabel verwendet. Die orangefarbene LED zeigt den Datenverkehr im Kabel an, d.h. der DTR erhält Daten.

Die IP-Adresse kann mit einem Ping-Befehl getestet werden, nachdem der Ethernet-Anschluss eingerichtet wurde und der DTR eingeschaltet ist. In Windows-Systemen ist der Ping-Befehl über die Eingabeaufforderung (normalerweise unter Zubehör/ Accessories) verfügbar. Die Verwendung des ping ist recht einfach: Gehen Sie zur Befehls-Schnittstelle (zum Beispiel der Eingabeaufforderung), geben Sie den Namen des Befehls und die IP-Adresse, die Sie überprüfen möchten, ein und drücken Sie 'Enter'. Wenn der Ethernet-Anschluss korrekt ist, der DTR eingeschaltet und die beim Ping-Befehl eingegebene Adresse ebenfalls korrekt ist, antwortet der DTR auf die Ping-Aufforderung und sendet alle erhaltene Datenpakete zurück, siehe Abbildung 12.8.

```
C:\\ping 169.254.123.123

Pinging 169.254.123.123 with 32 bytes of data:

Reply from 169.254.123.123: bytes=32 time<10ms ITL=32

Ping statistics for 169.254.123.123:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Ruerage = 0ms

C:\>
```

Abbildung 12.8 Ping OK

12.3.1 Fehlersuche beim Anschluss

Wenn Sie eine Fehlermeldung nach einem Ping-Befehl erhalten (zum Beispiel Request timed out wie in Abbildung 12.9), überprüfen Sie ihre Anschlüsse.

```
C:\\ping 169.254.123.1

Pinging 169.254.123.1 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 169.254.123.1:
Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

C:\\_
```

Abbildung 12.9 Ping, Fehlermeldung

Öffnen Sie zuerst die Abdeckung und die Frontplatte des DTRs und überprüfen Sie die Diagnose-LEDs des Ethernetanschlusses (siehe Abschnitt 12.1.2). **Hinweis:** Lassen Sie den DTR und ihren Computer eingeschaltet, während Sie die Diagnose-LEDs überprüfen.

Wenn Sie keine leuchtenden LEDs sehen können, ist irgendetwas physikalisch nicht in Ordnung mit ihrem Anschluss. Überprüfen Sie folgendes

- beide Geräte, der DTR und das Gerät am anderen Ende des Kabel sind eingeschaltet
- das Ethernet-Kabel ist ordnungsgemäß an beiden Enden eingesteckt
- es handelt sich um das richtige Ethernet-Kabel (Crossover-Kabel für direkten Anschluss 'DTR-an-Computer')

Wenn die grüne LED leuchtet, wurde der richtige Kabel-Typ für den Ethernet-Anschluss verwendet. Versuchen Sie in diesem Fall, den DTR anzupingen und stellen Sie fest, ob die orangefarbene LED während des Pingens leuchtet.

Wenn die LED nicht blinkt, überprüfen sie erneut ihre IP-Adresse (um sicher zu gehen, daß Sie wirklich den abgefragten DTR anpingen). Falls der DTR nicht direkt an den Computer angeschlossen ist (mit einem Crossover-Kabel), kann ein Routing-Problem vorliegen. Wenden Sie sich dann bitte an ihren Netzwerk-Administrator.

Hinweis: Stellen Sie sicher, dass WLAN (Wireless Netzwerk) nicht eingeschaltet ist, wenn der DTR angeschlossen ist. Bei eingeschaltetem WLAN funktioniert die Ethernet-Verbindung unter Umständen nicht richtig.

Hinweis: Wird eine Firewall-Software (besonders die von Windows XP) mit hohen Sicherheitseinstellungen verwendet, könnte eine Verbindung zum DTR verhindert werden. Ist der DTR direkt mit dem Computer verbunden (und nicht mit einem Netzwerk), ist es am besten die Firewall vorübergehen abzuschalten um das Problem zu beheben. Schalten sie die Firewall wieder an bevor Sie sich wieder ins Netzwerk einloggen!

12.4 Die Geräte-Homepage

Ab der DTR Programmversion 2.0 verfügt jeder DTR über eine intergrierte Homepage mit Informationen zum Messgerät und einer vollfunktionsfähigen Bedienoberfläche. Das Gerät funktioniert dabei wie ein Web-Server. Somit lässt sich über eine bestehende Ethernet-Verbindung zum DTR die Geräte-Homepage aufrufen.

- Erstellen Sie eine funktonierende Ethernet-Verb\(\textit{Athhib\textit{dung 12.10}} \) Ger\(\text{der}\) Ger\(\text{der}\) tenezum DTR (siehe oben).
- 2. Starten Sie den Web-Browser.
- 3. Die URL-Adresse der Geräte-Homepage ist die IP-Adresse des DTR's. Voreingestellt ist http://192.168.23.254/. Geben Sie diese Adresse im Browser ein, so wie jede andere Adresse auch (zum Beispiel http://www.vaisala.com/).
- 4. Warten Sie bis die Geräte-Homepage geladen ist. Dies kann einige Sekunden dauern.
 - Sollte die Seite eigenartig aussehen, laden Sie sie erneut durch drücken von Refresh. Die Seite sollte in etwa so wie in Abbildung 12.10 aussehen. Das exakte Aussehen hängt vom Browser und den Displayeinstellungen ab.
- Unter Links im Link-Bar auf der linken Seite finden Sie weiterführende Informationen zum Gerät.

12.4.1 Remote Panel

Das Remote-Panel des Gerätes ist ein voll funktionsfähiger virtueller DTR, bei dem sich die Tasten per Mausklick betätigen lassen. Es macht keinen Unterschied ob die Tasten direkt an der Geräte-Tastatur oder über das Remote-Panel betätigt werden. Alle Befehle werden in der Reihenfolge ihrer Eingabe ausgeführt. Unabhängig davon ob von wo sie eingegeben wurden.

Hinweis: Das Bild der DTR Anzeige im Remote-Panel wird manchmal mit einer kleinen Zeitverzögerung (wenige Sekunden) aktualisiert. Dies hängt unter anderm vom verwendeten Computer und vom Netzwerk ab. Manchmal erscheint es so

Abbildung 12.11 DTR Remote Panel

als ob Anzeigen "übersprungen" werden. Als ob Mausklick-Eingaben schneller ausgeführt werden als der Browser das Bild aktualisiert.

12.4.2 Sensorverifizierungszertifikat

Über den folgenden Verifizierungslink auf der Link-Leiste kann ein Sensorverifizierungszertifikat eingesehen und ausgedruckt werden. Weitere Informationen zur Instrumentenverifizierung finden Sie in Kapitel 13.

12.5 Datenerfassung über Ethernet

Die Ethernet-Verbindung dient hauptsächlich dem Sammeln der Messdaten vom Instrument. Sie können gemäß den folgenden Angaben selbst Software zum Herunterladen programmieren.

Hinweis: Vaisala garantiert die Richtigkeit der Angaben, übernimmt jedoch keine Verantwortung und bietet keine Unterstützung für Software.

12.5.1 Kommunikationsprotokoll

Das Kommunikationsprotokoll basiert auf UDP/IP zu Port 50023. Es ist ein Client/Server-Protokoll, bei dem der DTR als Server fungiert und dementsprechend nur Informationen sendet, wenn der Client (d.h. ihr Computer) diese abfragt. Der Server sollte auf alle Anforderungen innerhalb von fünf Sekunden (5000 ms) nach der Anforderung antworten. Gewöhnlich liegt die Ansprechzeit unter 100 ms.

Anforderungsformat

Die Kommunikation Client-Server, d.h. die Anforderungen, die von ihrem Computer an den DTR geschickt werden, sind im Binärformat. Die Anforderungspakete enthalten die folgenden Binärdaten (alle Ganzzahlen sind in der Netzwerk-Reihenfolge, MSB zuerst):

- 32-bit Ganzzahl: Paketnummer
- 32-bit Ganzzahl: Anforderungs-ID
- (beliebig): Anforderungsdaten (abhängig von der Anforderung)
- (beliebig): Ergänzungsdaten

Wichtig: Die maximale Größe der Meldung beträgt 1472 8-Bit-Bytes.

Die **Paketnummer** wird vom DTR reflektiert, aber in keiner Weise verarbeitet. Die Paketnummern müssen nicht folgegebunden sein, ein beliebiger 32-Bit Wert ist gültig.

Die **Anforderungs-ID** ist ein 32-Bit Wert, der die angeforderte Funktion identifiziert, wie zum Beispiel die Sensorinformationen. Weitere Informationen zu Anforderungs-IDs finden Sie im Abschnitt 12.5.2.

Die **Anforderungsdaten** bestehen aus 0 bis 1464 8-Bit-Bytes zusätzlicher Daten für die Anforderung.

Die Ergänzungs-Daten können dazu dienen, die Anzahl der 8-Bit-Bytes in einer Meldung zu erhöhen. Es können beliebig viele NULL-Zeichen (0x00) an das Ende der Anforderung hinzugefügt werden, so lange die gesamte Größe der Meldung nicht die

maximale Länge von 1472 8-Bit-Bytes übersteigt. Dies kann zum Beispiel nützlich sein, wenn die Implementierung des Clients Pakete mit fester Länge verwendet.

Ansprechformat

Die Ansprechdaten, die der DTR sendet, sind im ASCII-Format. Mit Ausnahme der Paketnummer sind die Daten für den Menschen lesbar. Die Datenstruktur ist sehr einfach:

- Paketnummer (32-Bit Ganzzahl)
- Null oder mehrere Zeilen mit ASCII- (Text) Schlüsseln und Werten, die diesen Schlüsseln zugeordnet sind (zum Beispiel: der Schlüssel für die Temperatur und die Prozesstemperatur in Celsius)

Die **Paketnummer** wird unverändert reflektiert. Der Client (die Software auf dem Computer) kann die Paketnummer zur Überprüfung der Antwort mit der Paketnummer der Anforderung vergleichen.

Der **Meldetext** besteht aus Textzeilen, wobei jede Zeile aus einem einzigen Schlüssel (aus einem Wort) und seinem Wert oder Werten besteht. Die Werte werden durch ein Gleichheitszeichen (=) von dem Schlüssel getrennt und mehrere Werte werden durch Komma getrennt. Leerzeichen (ein Blank oder ein Tabulator) sind überall zulässig - Ausgenommen: innerhalb eines Einzelschlüssels oder eines Schlüsselnamens.

Wenn die Antwort aus einer Zeichenkette besteht, wird sie in doppelte Anführungszeichen (") gesetzt.

Beispiele für gültige Meldetextzeilen:

```
ok
temp=23.45
headhum = 13.32
LEDcnt = 8341
ChemCurve = 1.234, 3.21, 0.00, 4.37, 1.11, 0.00002, 2.1345
StatusMessage = "Normal Operation"
```

Hinweis: In Schlüsselkennungen (siehe Abschnitt 12.5.2) wird nicht zwischen Großund Kleinbuchstaben unterschieden. Dennoch empfehlen wir, daß sie so, wie in dieser Spezifikation, geschrieben werden sollen.

Der Server (DTR) kann die Antwortschlüssel in beliebiger Reihenfolge senden. Er sendet auf jeden Fall die obligatorischen Schlüssel (mit einem Stern versehen, in Abschnitt 12.5.2) der spezifischen Anforderung, aber er läßt womöglich alle anderen Schlüssel aus. Der Server kann auch Schlüssel senden, die in diesem Dokument nicht spezifiziert wurden. Diese können aber vom Client (Computer) ignoriert werden.

Anforderungs- und Antwortfehler

Wenn der Server (DTR) einen Fehler entdeckt, antwortet er mit einer Fehlermeldung (weiter Informationen dazu finden Sie im Abschnitt 12.5.3). Eine Fehlermeldung kann zum Beispiel durch eine unbekannte Anforderung verursacht werden oder, weil

die Datenerfassung für den obligatorischen Schlüssel einer Antwort nicht erfolgen konnte.

12.5.2 Anforderung-Antwort-Paar, Spezifikation

Die Liste unten beschreibt die *Abfragemeldungen*, d.h. die Anforderung-Antwort-Paare, die für die Datenerfassung über Ethernet benötigt werden. Obligatorischen Antwortschlüsseln geht ein Stern (*) voraus.

Hinweis: Selbst, wenn mehrere Anforderungsdaten-Optionen verfügbar sind, kann immer nur eine gleichzeitig verwendet werden. Zum Beispiel muß jede Sensostatus-Anforderung entweder an Sensor A oder Sensor B und nicht an beide gerichtet werden.

NULL-Meldung

Die Null-Meldung ist in den Abfragemeldungen zur Fehlerbeseitigung enthalten, da man sie auch dazu benutzen kann, festzustellen, ob der Server 'zuhört'. Die Meldung ermöglicht ein bitorientiertes Übertragungssteuerverfahren (Übertragen von Daten mit Fehlerkorrektur).

Anforderungs-ID 0x000000000
Anforderungsdaten (keine)
Antwortschlüssel (keine)

Protokollversion

Die Versionsabfrage wird mit einem Wert, der die DTR-Server-Protokollversion darstellt, beantwortet.

Anforderungs-ID 0x00000001 Anforderungsdaten (keine)

Antwortschlüssel *Version : Ganzzahl, die Server-Protokollversion (derzeit:

3)

DTR, Informationen

Die Informations-Abfrage des DTR ergibt die grundlegenden Informationen der DTR-Einheit.

Anforderungs-ID 0x00000002 Anforderungsdaten (keine)

Antwortschlüssel *DTRserial : Ganzzahl, DTR-Serienr

*ProcessorSerial : Ganzzahl, Prozessorkarten-Seriennr

*MBserial : Ganzzahl, Motherboard-Seriennr

IFserial : Ganzzahl, Sensor-Schnittstellen-Seriennr

Die IFserial (Sensor-Schnittstellen-Seriennummer) wird nur zur Verfügung gestellt, wenn die Information verfügbar ist.

Sensor-Informationen

Die Sensor-Informations-Abfrage liefert die Grundinformationen des ausgewählten Sensors.

Anforderungs-ID 0x00000003

Anforderungsdaten0x00000000: Sensor AAnforderungsdaten0x00000001: Sensor B

Antwortschlüssels *SensorSerial: Ganzzahl, Sensor-Seriennummer

 $\verb§*SProcSerial : Ganzzahl, Sensor-Prozessorkarte-Serien nummer \\$

Messergebnisse

Die Messergebnisse-Abfrage ergibt die gemessenen und berechneten Messwerte des ausgewählten Sensors.

Anforderungs-ID 0x00000004

Anforderungsdaten 0x00000000 : Sensor A
Anforderungsdaten 0x00000001 : Sensor B

Antwortschlüssels *LED : Ganzzahl, Sensor-LED Wert

 $\begin{array}{ll} {}^*\text{CCD} & : & \text{Fließkomma, Abbild-Grenzlinie} \\ {}^*\text{nD} & : & \text{Fließkomma, berechneter } n_D \text{Wert} \\ {}^*\text{T} & : & \text{Fließkomma, Prozesstemperatur} \\ \end{array}$

*Tsens : Fließkomma, Sensor, interne Temperatur *RHsens : Fließkomma, Sensor, interne Feuchtigkeit *CALC : Fließkomma, berechneter Konzentrationswert

DTR Status

Anforderungs-ID 0x00000006 Anforderungsdaten (keine)

Antwortschlüssel *Status1 : String, Sensor A, Statusmeldung

*Status2 : String, Sensor B, Statusmeldung

*Volt1 : Fließkomma, DTR interne Spannung 1

*Volt2 : Fließkomma, DTR interne Spannung 2

*DTRtemp : Fließkomma, DTR interne Temperatur

12.5.3 Fehlermeldung, Spezifikation

Wenn der Server (DTR) die Anforderung nicht erkennt oder nicht beantworten kann, reagiert er mit einer Fehlermeldung. Die Fehlermeldungen haben die folgenden Schlüssel:

*Error : Ganzzahl, Fehlercode 0x00000000 : unbekannte Anforderung

*Error : Ganzzahl, Fehlercode 0x00000001 : Anforderung erkannt, ungültige

Anforderungsdaten

*Error : Ganzzahl, Fehlercode 0x00000002 : Sensor(en) nicht an DTR angeschlos-

sen

 ${\tt ErrorMsg} \,:\, String, Fehler-Details$

Es können u. U. auch fehler-abhängige Extraschlüssel vorkommen.

13 Sensorverifizierung

Ein Unternehmen, das nach den ISO 9000 Qualitäts-Standards zertifiziert ist, muss über definierte Verfahren zur Kontrolle und Kalibrierung seiner Messgeräte verfügen. Solche Verfahren sind unabdingbar, um die Konformität des Endproduktes gemäß spezifizierten Anforderungen zu demonstrieren. Das Unternehmen sollte:

- Die erforderliche Genauigkeit ermitteln und entsprechende Geräte für die Messungen auswählen.
- Entsprechende Kalibrierungsverfahren einschließlich der Verfahren zur Überprüfung und Akzeptanzkriterien entwickeln.
- Die Ausrüstung zu vorgeschriebenen Intervallen mit zertifizierten Geräten kalibrieren. Dies sollte in Übereinstimmung mit den gültigen und anerkannten Normen erfolgen. Bei Anwendungen, für die keine Normen existieren, muss die Grundlage für die Kalibrierung entsprechend dokumentiert werden.

Vaisala verifiziert die Kalibrierung aller ausgelieferten Instrumente gemäß eines Verfahrens, das dem im Abschnitt 13.1 beschriebenen ähnlich ist. Das Qualitätssystem von Vaisala ist die ISO 9001, zertifiziert durch Det Norske Veritas.

13.1 Verifizierung des Brechungsindexes n_D

Vor Beginn der Verifizierungsverfahren stellen Sie sicher, dass Sie einen Vaisala K-PATENTS[®] PR-23 Probenhalter zur Hand haben. Prüfen Sie auch den Zustand Ihrer Standard-Brechungsindexflüssigkeiten. Sie benötigen auch eine Reinigungslösung (Ethanol) um das Sensorprisma und den Probenhalter zu reinigen.

Der Probenhalter hält die Probe auf der Prismaoberfläche und verhindert das Eindringen von Umgebungslicht. Der Universalprobenhalter PR-1012 (Abbildung 13.1) kann mit allen Vaisala K-PATENTS[®] PR-23 Sensoren verwendet werden (im PR-23-M wird nur der obere Teil des Probenhalters benötigt).

Abbildung 13.1 Der Universalprobenhalter PR-1012

Die Verifizierung der PR-23 Sensor-Kalibrierung wird anhand einer Reihe von Standard-Brechungsindex-Flüssigkeiten (Standard-R.I.-Flüssigkeiten) mit den Nennwerten bei 25 °C vorgenommen:

- 1,330
- 1,370
- 1,420
- 1,470
- 1,520

Die Genauigkeit der zertifizierten Standard-Brechungsindex-Flüssigkeiten ist $\pm\,0,0002$ und dieser Wert kann zurückgeführt werden auf die nationalen Normen: N.I.S.T Standards $\#\,1823$ und $\#\,1823$ II.

Die Wiederholbarkeit des PR-23 Sensors, d.h. die Abweichung von der letzten n D Kalibrierung liegt innerhalb von \pm 0,0002.

Da die spezifizierte Genauigkeit des PR-23 \pm 0,0002 beträgt, ergibt sich für als repräsentativer Wert die Summe der zwei Genauigkeits-Spezifikationen, d.h. \pm 0,0004.

Vaisala bietet eine Reihe von Standard-R.I.-Flüssigkeiten an: im Set PR-2300 sind diese fünf Flüssigkeiten enthalten. Das Set kann entweder direkt von Vaisala oder über die nächstgelegene Vertretung erworben werden.

13.1.1 Umgang mit Flüssigkeiten mit Brechungswert

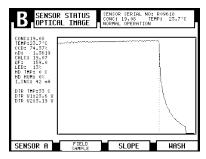
Verwenden Sie Handschuhe und Schutzbrille. Stellen Sie sicher, dass die Entlüftung gut funktioniert, örtliche Belüftung wäre empfehlenswert. Bitte lesen Sie die Sicherheitsanweisungen und das mit den Flüssigkeiten mitgesendete Sicherheitsdatenblatt durch (gültig innerhalb des Brechungsindex zwischen 1,30 - 1,57, Sicherheitsmarkierung gültig für EU/EEA). Geben Sie keine Tücher oder Flüssigkeitsbehälter in den Hausmüll, entsorgen Sie den Abfall gemäß den örtlichen Bestimmungen zu chemischen Abfällen.

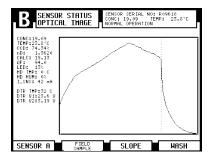
13.2 Verifizierungsverfahren

Um die Verifizierung zu starten, wählen Sie im Hauptmenü Ihres Sensors die Option 1 VERIFIZIERUNG (Verification) Die erste Verifizierungsanzeige weist auf das Vor-Verifizierungsverfahren hin:

Abbildung 13.2 Verifizierung, Vor-Verifizierung

Drücken Sie nach Abschluss der Vorbereitungen auf WEITER (Continue) (äußerste rechte Funktionstaste), um die Verifizierung zu starten.


Die Verifizierung selbst wird durch das Refraktometersystem durchgeführt, Sie müssen nur den Anweisungen auf dem Bildschirm folgen und jeweils eine RI-Flüssigkeit auf den Sensor auftragen und VERIFIZ. (Verify) drücken (äußerste rechte Funktionstaste). Siehe Abbildung 13.3.


Abbildung 13.3 Verifizierungsanzeige

Wichtig: Zwischen den einzelnen RI-Flüssigkeiten müssen Prisma und Probenhalter sehr sorgfältig gereinigt und getrocknet werden. Verwenden Sie dazu ein geeignetes Lösungsmittel, beispielsweise Äthanol.

Wenn Sie überprüfen möchten, ob die Standardflüssigkeit das Prisma ordnungsgemäß befeuchtet, können Sie die Funktionstaste OPT. ABB. (Opt. image) drücken. Das optische Abbild sollte eine scharfe Grenzlinie wie z.B. in Abbildung 1.3 aufweisen. Weitere Informationen zum optischen Abbild finden Sie in Abschnitt 5.4.1.

Scharfes optisches Abbild (mit IDS)

Scharfes optisches Abbild (ohne IDS)

Abbildung 13.4 Typische optische Abbilder

Eine Erfassungsmethode für Verifizierungsdaten ist im DTR implementiert. Das Gerät misst jeden Verifizierungsdatenpunkt zehnmal und verwendet dann den Durchschnitt dieser Messungen. Das Messen jeder Verifizierungsflüssigkeit dauert etwa zehn Sekunden, währenddessen wird der Fortschritt der Messung angezeigt (Abbildung 13.5). Bitte warten Sie, bis der Verifizierungsschritt 2 angezeigt wird, bevor Sie mit der nächsten Verifizierungsflüssigkeit fortfahren..

212 PR-23 Betriebsanleitung

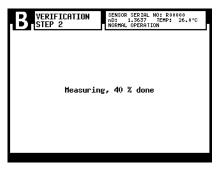
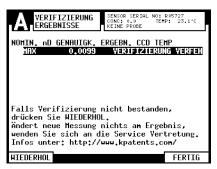
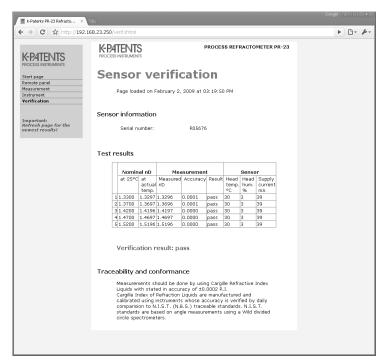



Abbildung 13.5 Fortschritt der Verifizierung

Der Probenhalter hält die Probe auf der Prismaoberfläche und verhindert das Eindringen von Umgebungslicht. Der universelle Probenhalter PR-1012 von Vaisala (Abbildung 13.1) kann mit jedem Vaisala K-PATENTS®-Sensor verwendet werden.

Durch das Drücken auf BEENDEN (Complete) im Verifizierungs-Display beenden Sie das Verifizierungsverfahren und rufen die Verifizierungsergebnisse auf.

Wenn die Verifizierung erfolgreich war, d.h. alle Messungen liegen innerhalb von ± 0.0004 der Nominalwerte, erhalten Sie die Meldung verifizierung ok (Verification ok), siehe Abbildung 13.6 unten.


Abbildung 13.6 Verifizierung erfolgreich abgeschlossen (hier nur mit einer RI-Flüssigkeit)

Hinweis: Die Sensorverifizierung betrifft nur die Messung des Brechungsindexes n_D . Die Berechnung der Konzentration von n_D und der Prozesstemperatur TEMP ist hier nicht enthalten, siehe Abschnitt 6.4, "Kalibrieren der Konzentrationsmessung".

Wenn die Verifizierung fehlschlägt, finden Sie in Abschnitt 13.4 geeignete Korrekturmaßnahmen.

13.3 Sensorverifizierungszertifikat

Das DTR speichert die letzte Verifizierung des DTR und die Ergebnisse dieser Verifizierung können über den Verifizierungslink in der Link-Leiste der Instrumenten-Homepage eingesehen und ausgedruckt werden. (Weitere Informationen zur Instrumenten-Homepage finden Sie in Kapitel 12.)

Abbildung 13.7 Instrumentenverifizierungsseite in einem Browser

Wichtig: Wenn Sie eine Verifizierung eines Sensors durchgeführt haben, laden Sie die Verifizierungsseite neu, um die aktuellsten Ergebnisse anzuzeigen. Das auf der Verifizierungsseite angegebenen Datum ist das Datum, an dem die Seite geladen wurde, nicht unbedingt der Verifizierungszeitpunkt.

Die Datums- und Uhrzeiteinstellungen werden vom Browser übernommen, d.h. von dem Computer, auf dem das Verifizierungszertifikat angezeigt wurde. Das DTR bietet keine Zeitmessungsfunktion.

Um das Verifizierungszertifikat zu drucken, verwenden Sie einfach die Druckfunktion Ihres Browsers. Die Seite ist so gestaltet, dass sie mit den Browser-Standardeinstellungen in der Regel auf ein einzelnes Blatt im Format A4 oder Letter passt; die Navigationsleiste wird dann weggelassen, um einen genaueren Ausdruck zu ermöglichen (Abbildung 13.8).

Hinweis: Wenn Sie zwei Sensoren überprüfen wollen, die an einem DTR angeschlossenen sind, müssen Sie zuerst einen überprüfen und dann das Ergebnis speichern oder das Zertifikat ausdrucken, da die Ergebnisse der Verifizierung des zweiten Sensors die Ergebnisse des ersten Sensors überschreiben. Überprüfen Sie die Sensorseriennummer auf dem Zertifikat darauf, ob der Bildschirm korrekte Ergebnisse zeigt, und aktualisieren Sie sie, wenn nötig.

13.4 Korrekturmaßnahmen

Wenn die Meldung verifizierung verfehlt (Verification failed) (Figure 13.9) erscheint, überprüfen Sie zuerst, dass das Prisma **und** der Probenhalter absolut sauber sind und

PR-23 Betriebsanleitung

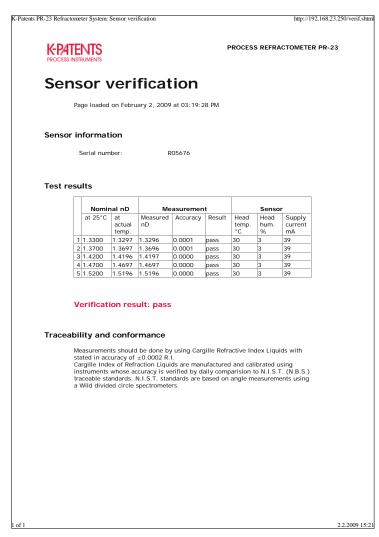


Abbildung 13.8 Sensorverifizierungszertifikat

der Probenhalter fest auf der Sensorspitze sitzt, bevor die Standardflüssigkeit aufgetragen wird. Vergewissern Sie sich, dass die Standard-Flüssigkeiten in gutem Zustand sind und das Verfallsdatum nicht überschritten haben. Inspizieren Sie auch die Prismaoberfläche, um sicherzugehen, dass sie glatt und blank ist und ohne jegliche Kratzer. Gehen Sie dann zurück zum Verifizierungsschritt 2, indem Sie die Funktionstaste WIEDERHOL (Repeat) drücken und das ganze Verifizierungsverfahren wiederholen.

Vielleicht sollten Sie die folgenden Punkte erneut überprüfen, da sie die häufigsten Gründe für eine fehlgeschlagene Verifizierung sind:

- Unzureichende Reinigung des Prismas.
- Zu alte Kalibrierflüssigkeiten
- Schlechte Temperaturkontrolle (Temperaturänderungen)

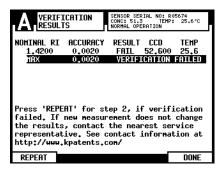
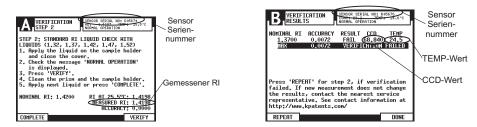



Abbildung 13.9 Verifizierung verfehlt

Falls die Verifizierung trotz Wiederholung noch immer fehlerhaft ist, müssen Sie das "PR-23 Sensor Verifizierungsblatt" ausfüllen (erhältlich in Anhang C). Schicken Sie den Vordruck an Vaisala oder Ihre nächste Vaisala K-PATENTS[®]-Vertretung oder schicken Sie eine e-Mail mit den vollständig erfassten Informationen an <info@kpatents.com> und warten Sie auf weitere Anweisungen.

Für den Sensorverifizierungsvordruck benötigen Sie die angezeigten Daten des Bildschirms vom Verifizierungsschritt 2 und den Verifizierungsergebnissen. Die Seriennummer des Sensors finden Sie in der oberen rechten Ecke eines jeden Fensters. Der gemessene $n_D(RI)$ -Wert wird angezeigt, wenn VERIFIZ. (Verify) has been pressed in Verification step 2. im Verifizierungs-Schritt 2 gedrückt wird. Die Liste mit den CCD- und TEMP-Werten finden Sie auf dem Display 'Verification Results' (Figure 13.10).

Abbildung 13.10 Feststellen der Verifizierungsinformationen für den Vordruck "PR-23 Sensor Verifizierungsblatt"

14 Einhaltung gesetzlicher Vorschriften und Zertifizierungen

14.1 EG-Konformitätserklärung für die Refraktometerserie PR-23

Die folgende Konformitätserklärung bestätigt die Einhaltung der geltenden EU/EWR-Anforderungen und gilt für alle PR-23 Refraktometer-Modelle von Vaisala:

2019-09-01G/JAMO

1 (1)

EU DECLARATION OF CONFORMITY

Manufacturer: Vaisala Oyj

Mail address: P.O. Box 26, FI-00421 Helsinki, Finland Street Address: Vanha Nurmijärventie 21, Vantaa, Finland

This declaration of conformity is issued under the sole responsibility of the manufacturer.

Object of the declaration:

K-Patents Process Refractometer PR-23 series with Transmitter DTR / STR

The object of the declaration described above is in conformity with Directives:

RoHS Directive (2011/65/EU)
EMC Directive (2014/30/EU)
Low Voltage Directive (2014/35/EU)

The conformity is declared using the following standards:

EN 50581:2012 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

EN 61010-1:2010 Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use – EMC requirements – intended for use in industrial locations

Signed for and on behalf of Vaisala Oyj, in Vantaa, on 1st September 2019

Jukka Lyömiö

Standards and Approvals Manager

14.2 Konformitätserklärung für PR-23-...-AX-Modelle (ATEX)

Die folgende Konformitätserklärung bestätigt die Einhaltung der europäischen ATEX-Anforderungen und gilt für alle PR-23 Refraktometer-Modelle von Vaisala:

VAISALA

2019-11-01B/JAMO

1 (1)

EU DECLARATION OF CONFORMITY

Manufacturer: Vaisala Ovi

P.O. Box 26, FI-00421 Helsinki, Finland Mail address: Street Address: Vanha Nurmijärventie 21, Vantaa, Finland

This declaration of conformity is issued under the sole responsibility of the manufacturer.

Object of the declaration:

K-Patents Process Refractometer PR-23-...-AX

The object of the declaration described above is in conformity with Directives:

RoHS Directive (2011/65/EU) EMC Directive (2014/30/EU) ATEX Directive (2014/34/EU) Low Voltage Directive (2014/35/EU)

The conformity is declared using the following standards:

EN 50581:2012 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

EN 60079-0:2012 + A11:2013 Explosive atmospheres - Part 0: Equipment -

EN 60079-15:2010 Explosive atmospheres - Part 15: Equipment protection by type

EN 61010-1:2010 Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use - EMC requirements - intended for use in industrial locations

DEKRA Certification B.V. has issued type examination certificate KEMA 05ATEX1183 X for this product.

Signed for and on behalf of Vaisala Oyj, in Vantaa, on 1st November 2019

Jari-Pekka Mörsky Quality Manager, Standards and Approvals

Vaisala Oyj | PO Box 26, FI-00421 Helsinki, Finland Phone +358 9 894 91 | Fax +358 9 8949 2227 Email firstname.lastname@vaisala.com | www.vaisala.com Domicile Vantias, Finland | VAT Fi01244162 | Business ID 0124416-2

14.3 Konformitätserklärung für PR-23-...-IA-Modelle (ATEX)

Die folgende Konformitätserklärung bestätigt die Einhaltung der europäischen ATEX-Anforderungen und gilt für alle PR-23-...-IA Refraktometer-Modelle von Vaisala:

2019-09-01F/JAMO

1 (1)

EU DECLARATION OF CONFORMITY

Manufacturer: Vaisala Oyj

Mail address: P.O. Box 26, FI-00421 Helsinki, Finland Street Address: Vanha Nurmijärventie 21, Vantaa, Finland

This declaration of conformity is issued under the sole responsibility of the manufacturer.

Object of the declaration:

K-Patents Process Refractometer PR-23-...-IA

The object of the declaration described above is in conformity with Directives:

RoHS Directive (2011/65/EU) EMC Directive (2014/30/EU)

ATEX Directive (2014/34/EU)

Low Voltage Directive (2014/35/EU)

The conformity is declared using the following standards:

EN 50581:2012 Technical documentation for the assessment of electrical and electronic products with respect to the restriction of hazardous substances

EN 60079-0:2012 + A11:2013 Explosive atmospheres - Part 0: Equipment - General requirements

EN 60079-11:2012 Explosive atmospheres - Part 11: Equipment protection by intrinsic safety "i"

EN 61010-1:2010 Safety requirements for electrical equipment for measurement, control and laboratory use – Part 1: General requirements

EN 61326-1:2013 Electrical equipment for measurement, control and laboratory use – EMC requirements – intended for use in industrial locations

Notified body Eurofins Expert Services Oy (number 0537) has issued EU-type examination certificate EESF 19 ATEX 028X for this product.

Signed for and on behalf of Vaisala Oyj, in Vantaa, on 1st September 2019

Jukka Lyömiö

Standards and Approvals Manager

A Glossar und Abkürzungen

- CCD = Charge Couple Device; Sensor, optisches Element
- CORE, CORE-Optik = Compact Optical Rigid Element: Alle Komponenten für die Messung befinden sich in einem festen Modul, dem CORE(-Optik) Modul.
- DTR = Indicating transmitter DTR, **D**ual sensor indicating **tr**ansmitter; der Messumformer eines Vaisala K-PATENTS[®] PR-23 Refraktometer-Systems.
- LCD = Liquid Crystal Display: Flüssigkeitskristall-Display, im DTR eingebaut.
- LED = Light Emitting Diode: Leuchtdiode, die Lichtquelle in einem Vaisala K-PATENTS[®] Refraktometer-Sensor.
- n_D= Brechungsindex einer Flüssigkeit, siehe Abschnitt 1.2.
- Sensorkodierung:
 - -AC = 3A zugelassen, Kompakt-Modell
 - -AP = 3A zugelassen, Sonden-Modell
 - -GC = Allzweck, Kompakt-Modell
 - -GP = Allzweck, Sonden-Modell
 - $\mbox{-} \mbox{M} = \mbox{Teflon Body-Refraktometer für chemisch aggressive Flüssigkeiten in kleinen} \\ \mbox{Rohren}$
 - -MS = Teflon Body-Refraktometer für Halbleiter/flüssige chemische Prozesse
 - -SD = Safe-Drive[™]-Sensor für das Vaisala K-PATENTS[®] Safe-Drive[™] -System für die sichere Einsetzen und Entfernen von Sensoren
 - -W = Saunders-Body-Refraktometer für chemisch aggressive Flüssigkeiten in großen Rohren -...-AX = Sensor mit ATEX-Zulassung, verändert für den Einsatz in explosionsgefährdeten Bereichen
 - -...-CS = Sensor mit CS-Zulassung, verändert für den Einsatz in explosionsgefährdeten Bereichen
 - -...-FM = Sensor mit FM-Zulassung, verändert für den Einsatz in explosionsgefährdeten Bereichen
 - -...-IA = Sensor mit ATEX-Zulassung, für den Einsatz in Gefahrenbereichen in Zone 0 und Zone 1
- STR = Messumformer STR, **S**ingle sensor indicating **tr**ansmitter, Einzelsensor-Messumformer für explosionsgefährdete Bereiche und Divert Control Systems

B Index

a	f
Ablagerungen 17	FEHLER PRISMAREINIGUNG 60, 74
Alarm-Relais 47	FEHLER TEMPERATURMESSUNG 73
aggressive Chemikalien 128	Feldkalibrierung 54
	Formular 229
b	Parameter 56
BACK 33	
BESCHREIBUNG-Menü 35	g
Behälterbodenflansch 97	Grenzlinie 2
BIAS-Einstellung 56	
Brechungsindex 2	h
	Hauptdisplayformat 34
С	HD HUM 38
CALC 38, 54	HD TMP 38
CCD Wert 38	HIGH SENSOR HUMIDITY 70
CONC 38, 54	HIGH SENSOR TEMP 70
CORE-Modul 221	HIGH TRANSMITTER TEMP 71
chemische Kurve 53	HOHE MESSUMFORMER TEMP. 71
	HOHE SENSORFEUCHTE 63, 70
d	HOHE SENSORTEMPERATUR 70
Diagnose-LEDs 68	
Display	i
reset 69	IDS 36
Spezifikationen 148	Inbetriebnahme 31
Sprache 34	ISO 9000 209
DTR siehe Messumformer	I_SNS 38
Sprache 34	
DTR TMP 38	k
DTR V1 38	Kalibrierung siehe Feldkalibrierung
DTR V2 38	KEIN OPTISCHES ABBILD 72
Durchflussadapter 86,88	KEIN PROBE 73
	KEIN SENSOR 69
e	KEIN SIGNAL 70
Einbau	KEINE PROBE 57
Sensor 6	KEINE PROBE/REINIGUNG-STOPP 57
ENTER 33	74
Entsorgung 4	Kompatibilität siehe Messumformer
ERHOLUNG 73	und Sensor
EXTERNAL HOLD 73	KURZSCHLUSS 70
EXTERNAL WASH STOP 74	kritischen Reflektionswinkel 2
EXTERNER REINIGUNG-STOPP 57, 74	
EXTERNES HALTEN 73	1
	LED 38

Leistungsklemmen 14	Prisma
9	
LOW IMAGE QUALITY 72	belag 17
LOW TEMP WASH STOP 74	Prismadichtung
LOW TRANSMITTER VOLT 71	überprüfen 63
	Prismenreinigung 17
m	Check 60
Menü	Druck 18
BESCHREIBUNG 35	Düsen 26
Relais 48	konfigurieren 56
Schalter 49	Parameter 60
Messprinzip 2	Relais 50
Messumformer	System 18
Beschreibung 9	Test 32
_	Zeit <i>18</i>
Kompatibilität 145	
Montage 10	Zyklus 57
Montage siehe Sensor	Probenhalter 209
Motherboard 13, 38	
mA Ausgang	q
Standardausgang 51	QF <i>38</i>
mA-Ausgang	
Konfigurieren 51	r
	RECOVERY 73
n	REINIGUNG 73
Netzschalter 12	REINIGUNG-CHECK 73, 74
NIEDRIGE ABBILDQUALITÄT 72	REINIGUNG-STOPP 50
NIEDRIGE SPANNUNG MESSUMF. 7	
	77, Relais 14
74	Alarm 47
NO OPTICAL IMAGE 72	
	Konfigurieren 47
NO SAMPLE 73	Relais-Menü 48
NO SAMPLE/WASH STOP 74	Reset
NO SENSOR 69	Display 69
NO SIGNAL 70	
	S
0	Safe-Drive
OUTSIDE LIGHT ERROR 71	Spezifikationen 170
OUTSIDE LIGHT TO PRISM 72	Schaltereingang 14
optisches Abbild 36	Schalter-Menü 49
•	Sensor
p	Feuchtigkeit 70
Passwort 41	Kompatibilität 77
PRECONDITIONING 73	Messbereich 77
PRISM COATED 72	Montage, PR-23-AC 86
PRISM WASH FAILURE 74	Montage, PR-23-AC 80 Montage, PR-23-AP 97
	_
	Montage, PR-23-M 127
PRISMA BELEGT 72	Montage, PR-23-W 133
PRISMENSPÜLWARNUNG 60, 73	Typenschild 11, 77, 85, 96, 111, 123,

132	Zahlen 33
Sensorkopffeuchtigkeit 38	TEMP 38
SHORT-CIRCUIT 70	TEMP MEASUREMENT FAULT 73
Sicherheitshinweise 3, 18	Temperaturmessung 38
Spezifikationen	Trockner 85, 123, 132
Sensor 77	
Verbindungskabel 148	u
STREULICHT AUF PRISMA 72	ultra-reine Feinchemikalien 128
STREULICHT-FEHLER 71	
Standardausgang 51	v
Stromversorgung	Verbindungskabel 10
Spezifikationen 148	VORBEREITUNG 73
t	w
Tastatur 33	WASH 73
BACK 33	WASH CHECK 73
ENTER 33	4–20 mA 14, 148
Funktionstasten 33	24V Gleichstrom 14

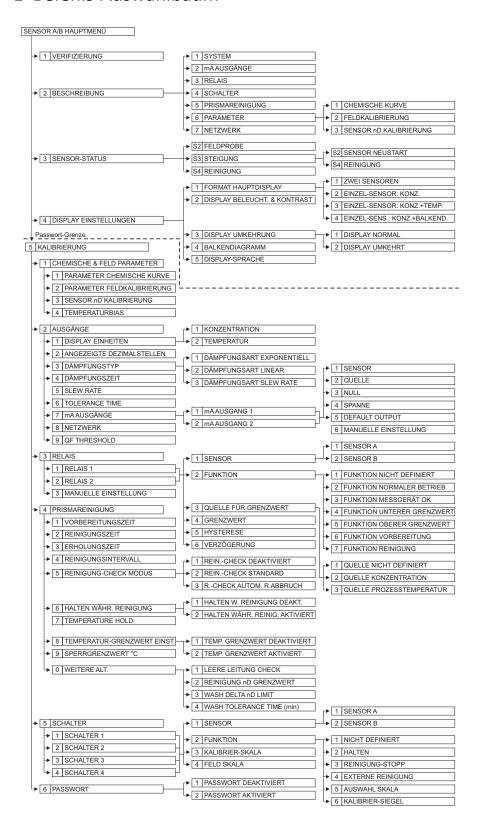
C PR-23 Sensor Verifizierungsblatt

Füllen Sie dieses Formular aus und faxen Sie es an Vaisala Oyj oder ihre örtliche Service-Vertretung. Kontakt-Adressen finden Sie unter http://www.kpatents.com/>.

Sensor Seriennummer:		
Kunde:		
Addresse:		
Fax:		
E-Mail:		
Datum:		
Verifikation durchgeführt von:		

	ANZEIGE 'VERIFICATION RESULTS'			
Probennummer	Nomineller n _D	Gemessener n _D	CCD	Temp
1	1,3200			
2	1,3700			
3	1,4200			
4	1,4700			
5	1,5200			

D PR-23 Feldkalibrierungsformular


Füllen Sie dieses Formular aus und faxen Sie es an Vaisala Oyj oder ihre örtliche Service-Vertretung. Kontakt-Adressen finden Sie unter http://www.kpatents.com/>.

Sensor Seriennummer:
Kunde:
Adresse:
Fax:
E-Mail:
Beschreibung der Probe:
Lösungsmittel (Wasser/sonstiges):
Labormethode:
Datum:
Daten erfasst durch:

		DTR ANZEIGEWERTE			
Probennummer	LAB%	CALC	Т	n _D	CONC

Hinweise zur Feldkalibrierung finden Sie in der PR-23 Bedienungsanleitung.

E Befehls-Auswahlbaum

Bühler Technologies GmbH

Harkortstraße 29 D-40880 Ratingen Tel.: +49 (0)2102-4989-0 Fax: +49 (0)2102-4989-20

Fax: +49 (0)2102-4989-20 analyse@buehler-technologies.com www.buehler-technologies.com