

Fluidcontrol

Refroidisseurs huile/air BLK

Les mécanismes d'entraînement hydraulique et les groupes hydrauliques sont utilisés en ingénierie, dans le cas des extractions de matières premières, en navigation maritime et dans bien d'autres domaines.

Dans les installations hydrauliques, l'huile sert à transmettre force et mouvement. Elle constitue un lubrifiant indispensable pour les engrenages. En tant que médiateur de force et lubrifiant, l'huile en fonctionnement est chauffée par les pertes dues aux frottements.

La température modifie la viscosité de l'huile ; la stabilisation de la température au moyen du refroidisseur est donc une condition préalable indispensable à un déploiement constant de puissance dans des installations et engrenages. En outre, la température influence le comportement face au vieillissement ainsi que la durabilité des huiles.

Pour effectuer l'évacuation de chaleur, l'air ambiant est volontiers utilisé comme fluide de refroidissement en raison de sa disponibilité illimitée. Étant donné que l'air est soumis à des changements de température saisonniers et que même le débit d'huile peut varier, une installation particulièrement précise des échangeurs thermiques essentiels à la stabilisation de le température d'huile est nécessaire.

Des matrices de refroidissement efficaces, une construction facile d'entretien ainsi que des moteurs de ventilateur à l'efficacité énergétique optimisée sont caractéristiques de la série BLK.

Construction facile d'entretien

Dimensions d'installation compactes

Émissions sonores faibles

Spectre de performance large

Matrice de refroidissement solide

Large palette d'accessoires

Introduction et description

Pourquoi un refroidisseur?

En regard de l'équipement des dispositifs hydrauliques avec des refroidisseurs, il existe différents flux de base parmi les

Il est tenté d'un côté de disposer les dispositifs de sorte à pouvoir se débrouiller sans refroidisseur et essayer ensuite, si cela ne suffit pas, de se débrouiller avec un refroidisseur monté a posteriori. Bien entendu, il faut ici souvent faire des compromis qui renchérissent le dispositif.

D'un autre côté, on reconnaît de plus en plus que planifier tout de suite un refroidisseur dans le concept du dispositif apporte des avantages pour ce qui est des besoins en place et des coûts de fabrication et de dispositif.

Pourquoi Bühler?

Si un refroidisseur à huile/air est prévu pour le refroidissement, celui-ci doit être construit de manière compacte et simple, avoir un niveau d'émissions sonores faible et être simple et facile à entretenir.

Notre expérience de plusieurs années dans la conception et la distribution de refroidisseurs à huile / à air est allée dans le développement de la série BLK. Une attention particulière a été portée sur la durabilité de la matrice de refroidissement, une pression de pulsation partielle notable devant être envisagée, en particulier dans les canalisation de retour.

La matrice de refroidissement peut être démontée facilement du carter de ventilation pour des travaux de maintenance sans que le ventilateur ou le moteur ne soient démontés.

Si le programme standard complet ne contient aucune solution pour votre application, nous pouvons également réaliser des propositions spécifiques pour chaque client.

Vous pouvez déterminer un refroidisseur adapté pour votre application sur la base des données contenues dans ce prospectus.

Structure et fonctionnement

Les BLK se divisent dans les sous-ensembles suivants :

- Matrice de refroidissement
- Carter de ventilation avec rails de montage
- Soufflerie, composée d'un moteur à courant alternatif triphasé, d'un ventilateur et d'une grille de protection/fixation
- La matrice de refroidissement et la soufflerie peuvent être démontés individuellement sans avoir à démonter les autres sous-ensembles.

Les matrices de refroidissement de la série BLK sont construites en aluminium. Les refroidisseurs sont conçus pour une utilisation en circuits d'huile hydraulique, y compris pour les canaux de retour. Ils ne sont pas adaptés à un usage avec de l'eau pure.

Il est également possible de livrer des matrices de refroidissement avec des versions de bypass (voir codification).

Selon l'application et le dispositif, il est souvent nécessaire d'installer un filtre de courant de dérivation. Dans ces cas-ci, nous recommandons de le combiner avec un circuit de refroidissement de courant de dérivation. Notre gamme de modèles BNK contient des combinaisons d'appareils adaptées à cet usage. Les combinaisons d'appareils de ce type sont également possibles pour équipe des systèmes nécessitant une rénovation.

Indications de planification

Mise en place

Le refroidisseur doit être mis en place de manière à ce que la circulation de l'air entrant et sortant puisse s'effectuer sans obstruction. À l'avant et à l'arrière du refroidisseur, la distance vers les obstacles à l'air doit être d'au moins la moitié de la hauteur du refroidisseur (Dimension B).

Une aération suffisante doit être observée. Lors de l'installation, veillez à éviter toute nuisance occasionnée par la circulation de l'air chaud ou un niveau sonore élevé.

En cas d'air ambiant sale, des dépôts de salissures plus élevés sont à prévoir dans la matrice de refroidissement. Il s'ensuit une baisse de la puissance de refroidissement. Dans ce cas, en particulier dans le cas d'un air contenant de la vapeur d'huile, les canaux d'air doivent être nettoyés réqulièrement.

Dans le cas d'une mise en place à l'air libre, prévoir une protection suffisante des moteurs vis-à-vis des intempéries.

Veillez à une bonne accessibilité pour l'inspection et l'entretien.

Fixation

Les refroidisseurs sont fixés sur les rails de montage à l'aide de quatre vis. Veillez à ce que la structure de support soit de dimension suffisante. Le lieu de montage est arbitraire.

Sous réserve de modifications techniques.

Branchement du circuit d'huile

La liaison du système vers la matrice de refroidissement doit être effectuée sans tension ni vibration, ce qui est assuré lors du raccord avec des tuyaux.

Veuillez respecter les prescriptions de sécurité en vigueur afin d'éviter les risques écologiques liés à d'éventuelles fuites d'huile (p.ex. bacs de récupération).

Codification

BLK 4.6- IBx - T50

Nombre de pôles du moteur Taille

Si l'on souhaite en outre un by-pass et/ou un contact thermique, l'indication suivante est ajoutée à la désignation du modèle :

(BLK 2-10) Bypass externe Version Bypass AB

ΙB

(BLK 3-9) ITB (BLK 3-9) By-pass interne de 2 bars sensible à la température / 45 °C (BLK 2-9) By-pass externe de 2 bars sensible à la température / 45 °C ATB

Valeur de by-pass de 2 bars, 5 bars, 8 bars

By-pass interne

Commutateur de température T50, T60 Température en °C, pour plus de détails consulter la

T70, T80 fiche de données séparée

Caractéristiques techniques

Données techniques

Matériaux / protection des surfaces	
Matrice de refroidissement :	Aluminium, laqué
coffret de ventilation, grille de protection et consoles	de moteur : Acier au revêtement de plastique
Couleur:	RAL 7001 / Moteur : RAL 7024/7030
Moyens d'exploitation :	Huiles minérales conformes à DIN 51524
	Huile pour engrenages conforme à DIN 51517-3
	Émulsions d'huile/eau HFA et HFB conforme à CETOP RP 77 H
	Glycol aquatique HFC conforme à CETOP RF 77 H
	Ester d'acide phosphorique HFD-R conforme à CETOP RP 77 H
Pression de service	
statique	
BLK 1.2:	max. 16 bar
BLK 2.2 – BLK 10.8 :	max. 21 bars
dynamique	
BLK 1.2:	11 bars (pour 5 millions d'alternance de charge, 3 Hz)
BLK 2.2 – BLK 10.8 :	15 bars (pour 5 millions d'alternance de charge, 3 Hz)
Température d'exploitation de l'huile :	max. 80ºC (plus élevée sur demande)
Température ambiante :	de -15 à +40 °C
Makerine (la shei arras /arrhusa maa dèlas libusahlas arru da	
Moteurs électriques (autres modèles livrables sur de	mande)
Tension / Fréquence :	
BLK 1.2:	230 V - 50 Hz
BLK 2.2 – BLK 10.8 :	220/380 – 245/420 V 50 Hz
	220/380 – 280/480 V 60 Hz

Type de protection:

BLK 1.2:

Résistance à la chaleur :

Les moteurs correspondent aux normes CEI 60034, CEI 60072, CEI 60085

IP44

IP55

Classe d'isolation F, Exploitation selon classe B

Données de base (à une fréquence de 50 Hz)

N° d'article	Type de refroidisseur	Puissance moteur Nombre de pôles Courant nominal à 400 V	Masse (kg)	Capacité (1)	Niveau acoustique db(A)*
3501200	BLK 1.2	0,05 kW / 2 / 0,24 A (230 V)	7	0,8	65
3502200IE3	BLK 2.2	0,55 kW / 2 / 1,3 A	25	1,3	81
3502400IE3	BLK 2.4	0,18 kW / 4 / 0,5 A	23	1,3	66
3503200IE3	BLK 3.2	1,1 kW / 2 / 2,3 A	34	1,8	87
3503400IE3	BLK 3.4	0,25 kW / 4 / 0,7 A	29	1,8	71
3504400IE3	BLK 4.4	0,37 kW / 4 / 1,0 A	33	2,3	73
3504600IE3	BLK 4.6	0,18 kW / 6 / 0,7 A	31	2,3	63
3505400IE3	BLK 5.4	0,75 kW / 4 / 1,9 A	48	3,1	79
3505600IE3	BLK 5.6	0,25 kW / 6 / 0,8 A	40	3,1	68
3506410IE3	BLK 6.4	2,2 kW / 4 / 4,6 A	77	4,1	86
3506610IE3	BLK 6.6	0,55 kW / 6 / 1,5 A	64	4,1	74
3507410IE3	BLK 7.4	2,2 kW / 4 / 4,6 A	88	5,4	89
3507610IE3	BLK 7.6	0,55 kW / 6 / 1,5 A	72	5,4	75
3508610IE3	BLK 8.6	1,5 kW / 6 / 3,8 A	104	6,3	79
3508810IE3	BLK 8.8	0,55 kW / 8 / 1,9 A	90	6,3	73
3509610IE3	BLK 9.6	2,2 kW / 6 / 5,6 A	158	8,2	86
3509810IE3	BLK 9.8	1,1 kW / 8 / 3,0 A	141	8,2	79
3510610IE3	BLK 10.6	5,5 kW / 6 / 12,8 A	258	19	90
3510810IE3	BLK 10.8	2,2 kW / 8 / 5,9 A	246	19	84

Les numéros de référence pour BLK 2.2-5.6 sont ceux des versions 50/60 Hz ; pour BLK 6.4-10.8, uniquement la version 50 Hz, la version 60 Hz requérant une demande.

Exemples de calcul et nomenclature

Installation

L'installation d'un refroidisseur à huile/air s'effectue en deux étapes :

- 1. Evaluation ou sélection de la taille de refroidisseur
- 2. Evaluation de la perte de pression réelle

ETD [K] Différence de température d'entrée : ETD = $\mathbf{t}_{\ddot{O}E}$ - \mathbf{t}_{LE}

 $P_{\text{spéc}}[kW/K]$ performance spécifique du refroidisseur (voir courbes de performance) : $P_{\text{spéc}} = P/ETD$

P [kW] Puissance de refroidissement en kW

Q[l/min] Débit d'huile

 $\mathbf{C}_{\text{Huile}}[kJ/kgK]$ capacité de réchauffement spécifique de l'huile (env. 2,0 kJ / kgK)

 ς [kg/dm³] Densité de l'huile \approx 0,9 kg/dm³

Exemples de calcul

Prévisions :

Volumes de réservoir (V) env. 200 l Température de l'huile en démarrage à froid (T_1) 15 °C (\approx 288 K)

L'huile se réchauffe en env.

t = 25 min. (1500 s) sur (T_2) 45 °C (\approx 318 K) Température d'huile souhaitée ($t_{\odot E}$) 60 °C Température d'entrée de l'air (t_{LE}) 30 °C

^{*}DIN EN ISO 3744, classe 3

Etapes de calcul

1. Détermination de P à partir du réchauffement du réservoir

$$P = \frac{V \cdot \varsigma \cdot c_{Huile} \cdot (T_2 - T_I)}{t} = \frac{200 \cdot 0.9 \frac{\text{kg}}{\text{l}} \cdot 2 \frac{\text{kJ}}{\text{kg} \cdot \text{K}} \cdot (318 \text{ K} - 288 \text{ K})}{1500 \text{ s}} = 7.2 \text{ kW}$$

- 2. ETD = t_{EH} t_{EA} = 60 °C 30 °C = 30 K
- 3. Détermination de la taille de refroidisseur : $P_{\text{spéc}} = P / ETD = 7.2 \text{ kW} / 30 \text{ K} = 0.24 \text{ kW/K}$
- Dans les courbes de puissance pour 80 l/min, chercher un refroidisseur avec P_{spéc} 0,24 kW/K. Il y a deux possibilités : BLK
 2.2 ou les BLK 3.4 plus gros mais plus silencieux

Courbes de perte de charge pour une viscosité moyenne de 30 cSt

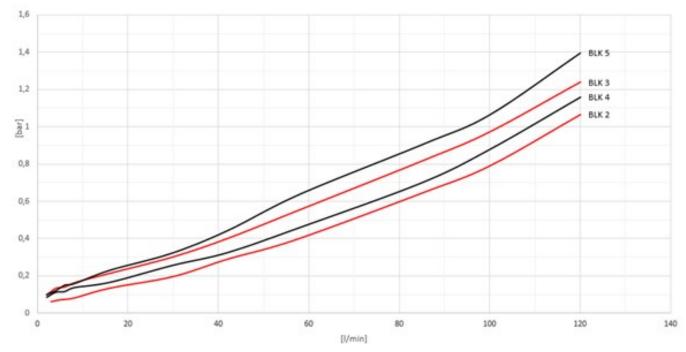


Fig. 1: Courbes de perte de pression BLK 2 à 5

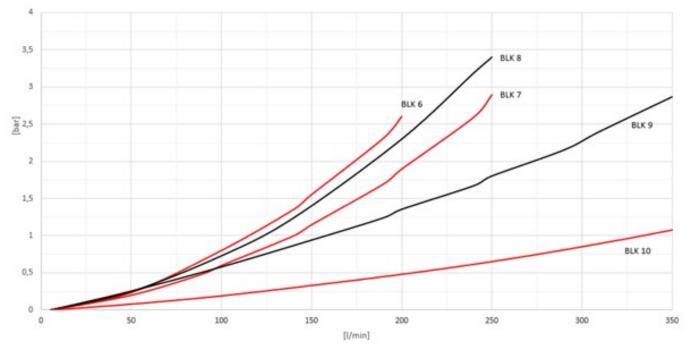
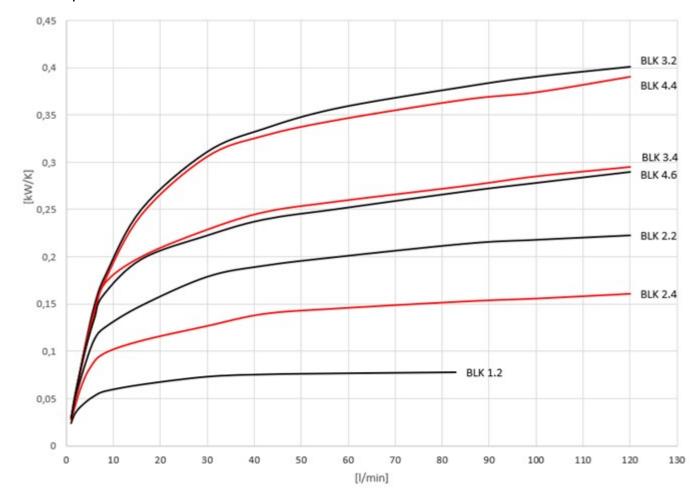


Fig. 2: Courbes de perte de pression BLK 6 à 10

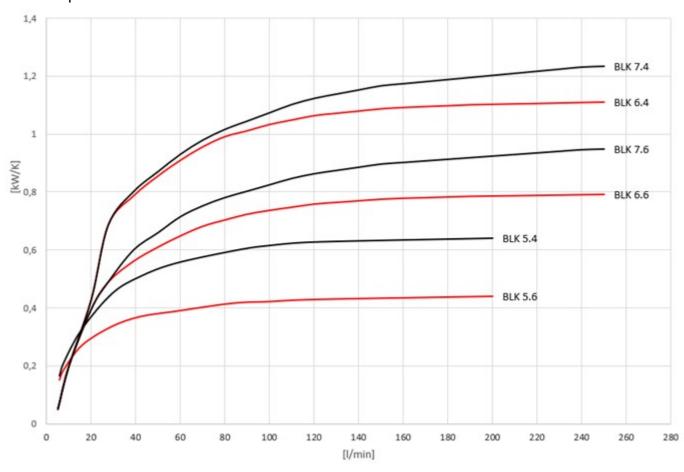
Remarque : En cas de mise à l'air libre ou de viscosité élevée, il peut être nécessaire d'installer des vannes de dérivation. Pour ce faire, veuillez consulter le chapitre Schémas fonctionnels.

Température/tableau de viscosité

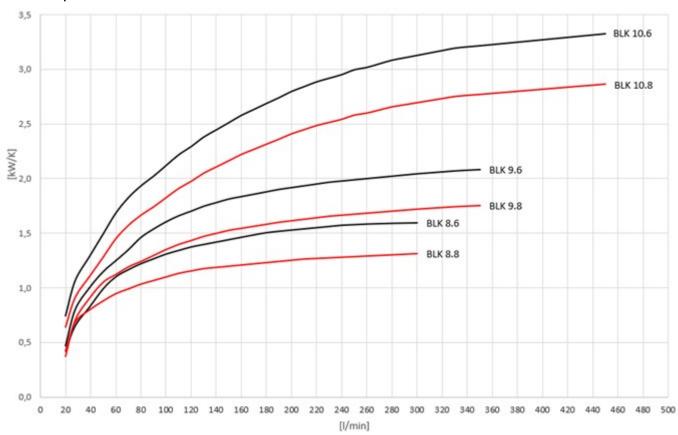
Type d'huile	pour 50 ºC	pour 60 ºC	pour 70 ºC
VG 16	9,4	5,6	3,3 cSt
VG 22	15	11	8 cSt
VG 32	21	15	11 cSt
VG 46	29	20	14 cSt
VG 68	43	29	20 cSt
VG 120	68	44	31 cSt
VG 220	126	77	51 cSt
VG 320	180	108	69 cSt

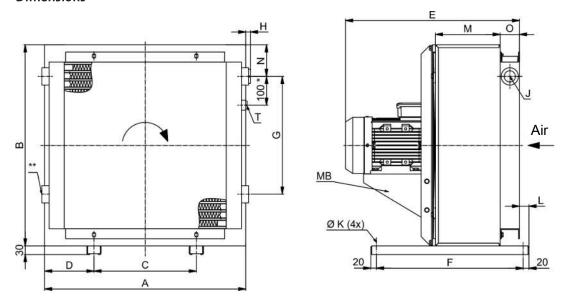

Correction c(visc)

Viscosité (cSt)	C(visc)	Viscosité (cSt)	C(visc)
10	0,6	60	1,6
20	0,8	80	2,1
30	1,0	100	2,7
40	1,2	150	4,2
50	1,4		

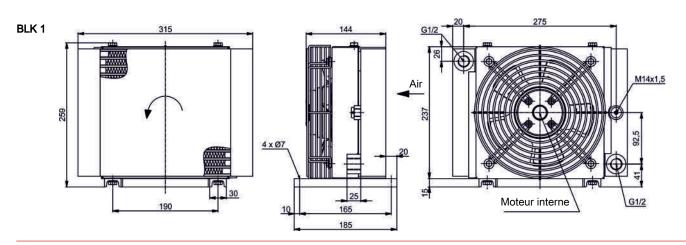

Evaluation de la perte de pression réelle

- 1. Déterminer Δp à partir de la courbe de perte de pression pour un débit d'huile Q et une taille de refroidisseur sélectionnée.
- 2. Déterminer la viscosité à partir des sortes d'huile et de la température.
- 3. Déterminer le facteur de correction c(visc) et multiplier Δp du 1. avec.

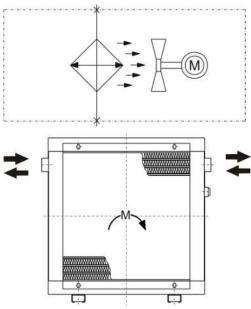

Courbe de puissance de taille 1-4


Courbe de puissance de taille 5-7

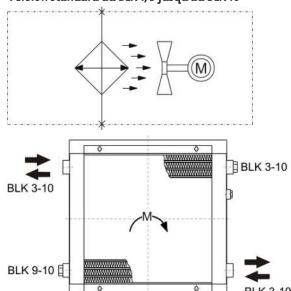
Courbe de puissance de taille 8-10



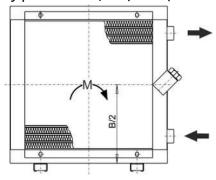
Dimensions


- MB Sur certains modèles, le montage du moteur se fait au moyen d'une console
- * pour BLK 9 et 10 = 150 mm
- ** Pièces de raccordement exclusivement pour BLK 9 et 10

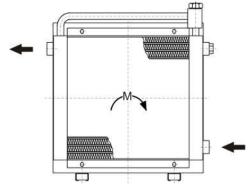
Type	Α	В	C	D	E	F	G	Н	J	K	L	M	N	0	MB
BLK 1.2	315	244	190	62,5	144	165	-	-	2x G1/2	7	20	50	33	45	-
BLK 2.2	370	370	203	83,5	416	510	-	25	2x G1	9	33	125	106	67	-
BLK 2.4	370	370	203	83,5	396	510	-	25	2x G1	9	33	125	106	67	-
BLK 3.2	440	440	203	118,5	464	510	230	25	3x G1	9	33	150	105	67	-
BLK 3.4	440	440	203	118,5	441	510	230	25	3x G1	9	33	150	105	67	-
BLK 4.4	500	500	203	148,5	466	510	230	25	3x G1	9	33	175	104	67	-
BLK 4.6	500	500	203	148,5	466	510	230	25	3x G1	9	33	175	104	67	-
BLK 5.4	580	580	356	112	514	510	305	23,5	3x G1	9	33	200	100	67	-
BLK 5.6	580	580	356	112	491	510	305	23,5	3x G1	9	33	200	100	67	-
BLK 6.4	700	700	356	172	612	510	410	9,5	3x G1 1/4	9	33	225	110	67	х
BLK 6.6	700	700	356	172	539	510	410	9,5	3x G1 1/4	9	33	225	110	67	х
BLK 7.4	700	840	356	172	637	510	590	9,5	3x G1 1/4	9	33	250	91	67	х
BLK 7.6	700	840	356	172	564	510	590	9,5	3x G1 1/4	9	33	250	91	67	х
BLK 8.6	870	870	508	181	651	510	585	11	3x G1 1/4	12	33	275	101,5	67	х
BLK 8.8	870	870	508	181	625	510	585	11	3x G1 1/4	12	33	275	101,5	67	х
BLK 9.6	1010	1020	518	246	714	890	822	3	4x G1 1/2	12	78	300	99	67	х
BLK 9.8	1010	1020	518	246	692	890	822	3	4x G1 1/2	12	73	300	99	67	Х
BLK 10.6	1185	1185	600	292,5	852	910	940	5	4x SAE 21/2	12	73	325	130	94	х
BLK 10.8	1185	1185	600	292,5	815	910	940	5	4x SAE 2 1/2	12	73	325	130	94	Х


Schémas fonctionnels

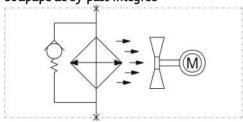
Version standard du BLK 2


Le sens d'écoulement s'effectue arbitrairement de gauche à droite ou dans l'autre sens.

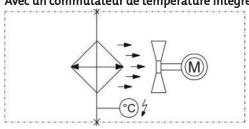
Version standard du BLK 1, 3 jusqu'au BLK 10


Le sens d'écoulement BLK 3-10 s'effectue arbitrairement de haut à gauche en bas à droite ou dans l'autre sens. La sortie d'huile est toujours située sur le côté opposé. La seconde connexion doit être verrouillée.

By-pass interne IB/ITB (BLK 3-9)


L'entrée et la sortie d'huile sont toujours situées sur le même côté. Les ports situés sur le côté opposé doivent être bouchés.

By-pass externe AB (BLK 2-10) / ATB (BLK 2-9)



Entrée d'huile située toujours au-dessous. Les autres connexions doivent être verrouillées. La sortie d'huile est toujours située sur le côté opposé.

Soupape de by-pass intégrée

Avec un commutateur de température intégré

Avec soupape de by-pass sensible à la température

