Benutzerhandbuch

Vaisala Polaris Prozessrefraktometer Serie PR53

VAISALA

BD580018

HERAUSGEBER

Vaisala Oyj Vanha Nurmijärventie 21, FI-01670 Vantaa, Finnland P.O. Box 26, FI-00421 Helsinki, Finnland +358 9 8949 1 www.vaisala.com docs.vaisala.com

© Vaisala 2024

Ohne schriftliche Genehmigung des Urheberrechtsinhabers darf kein Teil dieses Dokuments in irgendeiner Form und unabhängig von der Methode – elektronisch oder mechanisch (einschließlich Fotokopien) – vervielfältigt oder veröffentlicht, noch darf der Inhalt modifiziert, übersetzt, adaptiert, verkauft oder Dritten zugänglich gemacht werden. Übersetzte Dokumente und übersetzte Teile mehrsprachiger Dokumente basieren auf der Originalversion in englischer Sprache. In Zweifelsfällen ist die englische Version maßgebend, nicht die Übersetzung.

Der Inhalt dieses Dokuments kann ohne vorherige Ankündigung geändert werden.

Lokal für die Produkte und Services geltende Vorschriften und Richtlinien können abweichen und haben gegenüber den Informationen in diesem Dokument Vorrang. Vaisala macht keinerlei Zusicherungen im Hinblick auf die Einhaltung der lokal zu einem beliebigen Zeitpunkt geltenden Vorschriften und Richtlinien durch dieses Dokument und schließt jegliche daraus erwachsende Haftung und Verantwortlichkeit aus. Sie werden angewiesen, die Anwendbarkeit der örtlichen Vorschriften und Richtlinien und deren Auswirkungen auf die beabsichtigte Verwendung der Produkte und Services zu bestätigen.

Dieses Dokument ist keine rechtsverbindliche Vereinbarung zwischen Vaisala und dem Kunden oder Endbenutzer. Alle rechtsverbindlichen Verpflichtungen ergeben sich ausschließlich aus dem jeweiligen Vertrag oder den entsprechenden allgemeinen Geschäftsbedingungen von Vaisala (www.vaisala.com/policies).

Dieses Produkt enthält von Vaisala oder Dritten entwickelte Software. Die Verwendung der Software unterliegt den Lizenzbedingungen und -bestimmungen im zugehörigen Liefervertrag oder – sofern keine separaten Lizenzbedingungen und bestimmungen vorhanden sind – den Allgemeinen Lizenzbestimmungen der Vaisala Group.

Dieses Produkt enthält gegebenenfalls Open-Source-Software-Komponenten (OSS). Wenn dieses Produkt OSS-Komponenten enthält, unterliegen die OSS-Komponenten den Bedingungen der einschlägigen OSS-Lizenzen, und Sie sind im Rahmen Ihrer Nutzung und Weitergabe der OSS-Komponenten in diesem Produkt an die Bedingungen dieser Lizenzen gebunden. Einschlägige OSS-Lizenzen werden mit dem Produkt selbst oder auf geeigneten Datenträgern (abhängig vom jeweiligen Produkt und von den mitgelieferten Produktkomponenten) bereitgestellt.

Inhaltsverzeichnis

1.	Über dieses Dokument	11
1.1	Versionsinformation	
1.2	Verwandte Handbücher	12
1.3	Konventionen in der Dokumentation	13
1.4	Marken	
1.5	Patentvermerk	13
2.	Produktübersicht	14
2.1	Sicherheit	14
2.1.1	Schutz vor elektrostatischer Entladung	14
2.2	Produktbezeichnungen	14
2.3	Produktübersicht des PR53	
2.4	PR53 Refraktometermodelle	15
2.5	Refraktometerstruktur	
2.6	Lagerung und Transport	18
3.	Refraktometeranschlüsse	
3.1	Refraktometeranschlüsse	19
3.2	Systemverdrahtung	20
3.3	Überlegungen zur Verdrahtung	22
4.	Benutzeroberflächen	24
4.1	Refraktometer-LEDs	24
4.2	Indigo520 Benutzeroberflächen	25
4.3	PC-Software Vaisala Insight	26
4.4	Modbus RTU	
4.5	Analogausgang	27
5.	Konzentrationsmessung	28
5.1	Konzentrationsmessung im Überblick	28
5.2	Konzentrationskurve	
5.2.1	Parameter der Konzentrationskurve	
5.2.2	2 Feldjustierungsparameter	
5.2.3	3 Verwalten der Konzentrationskurven	
5.3	Unterstützung bei der Feldkalibrierung	
5.4	Kalibrierung	
5.5	BI-Justierung	
5.6	Messungsdämpfung	
5.6.1	Toleranzzeit	34
6.	Systemstart	
6.1	Systemstart	
6.1.1	Starten des eigenständigen Refraktometers	36
610	Starten des Refraktometers mit dem Indigo520	

7.	Verwenden des Refraktometers mit dem Vaisala Indigo520	38
7.1	Vaisala Indigo520 Messwertgeber	38
7.2	Herstellen der Verbindung zum Indigo520	38
7.3	Allgemeine Einstellungen	39
7.4	Menü "Diagnose"	39
7.4.1	Anzeigen des Refraktometerstatus	40
7.5	Konzentrationsmessung	40
7.5.1	Berechnen der Feldjustierung	40
7.5.2	Ändern der Konzentrationskurven	41
7.5.3	Feldprobe	41
7.6	BI-Kalibrierung	42
7.6.1	Vorbereiten der BI-Kalibrierung	42
7.6.2	Durchführen einer BI-Kalibrierung mit dem Indigo520	43
7.7	Konfigurieren des Analogausgangs mit dem Indigo520	44
7.8	Konfigurieren der Messungsdämpfung	
7.8.1	Exponentielle Dämpfung	
7.8.2	Lineare Dämpfung	
78.3	Limit der Anstiegsrate	46
,		
8.	Verwenden des Refraktometers mit der Software	
	Vaisala Insight	48
8.1	PC-Software Insight	48
8.2	Herstellen der Verbindung zur Software Insight	48
8.3	Insight Hauptansicht	50
8.3.1	Benutzermodi "Basis" und "Erweitert"	51
8.4	Konzentrationsmessung	51
8.4.1	Berechnen der Feldjustierung	51
8.4.2	Ändern der Konzentrationskurven	52
8.4.3	Hochladen der Konzentrationskurven	52
8.4.4	Feldprobe	53
8.5	BI-Kalibrierung	53
8.5.1	Vorbereiten der BI-Kalibrierung	54
8.5.2	Durchführen einer BI-Kalibrierung mit Insight	54
8.5.3	Abschließen der BI-Kalibrierung	56
8.6	BI-Justierung	56
8.6.1	Überschreiben der Werksjustierung	57
8.7	Temperaturjustierung	57
8.7.1	Justieren der Temperatur anhand zuvor gemessener Werte	57
8.8	Leeres Abbild	58
8.8.1	Erstellen eines leeren Abbilds	58
8.9	Konfigurieren des Analogausgangs	59
8.9.1	Justieren des Ausgangspegels für Analogausgang 1	60
8.9.2	Konfigurieren der Messungsdämpfung	60
8.10	Konfigurieren der Modbus-Kommunikationseinstellungen mit Insigh	nt 64
8.11	Wiederherstellen der Werkseinstellungen	65

9.	Präventive Wartung	66	
9.1	Präventive Wartung	66	
9.1.1	PR53M Wartungssicherheit	67	
9.2	Reinigen von Refraktometer und Prisma	68	
9.3	Entfernen des PR53SD Refraktometers vom Retraktor	68	
10.	Fehlerbeseitigung	76	
10.1	Fehlerbeseitigungsmeldungen	76	
10.2	Fehlerstatus	81	
10.3	Messstatus details	85	
10.4	Laborkalibrierung der Konzentration		
10.5	BI-Kalibrierfehler		
11.	Technische Daten		
11.1	Kompatibilität		
11.2	Allgemeine PR53 Spezifikationen		
11.3	PR53AC Spezifikationen		
11.4	Technische Daten der PR53AP		
11.5	Technische Daten der PR53GC		
11.6	PR53GP Spezifikationen	100	
11.7	Technische Daten der PR53M	103	
11.8	Technische Daten der PR53SD	105	
11.9	Technische Daten der PR53W	108	
11 10	Ersatzteile und Zubehör	110	
11.11	Recvclinganweisungen		
12.	Ersatzteilanleitungen	117	
12.1	Ersetzen der 2,5"-EPDM-Dichtung	117	
12.2	Ersetzen des Rückschlagventils für das PR53GP	119	
12.3	Ersetzen des Absperrventils für das PR53SD Safe-Drive System	120	
12.4	Ersetzen der PR53 Trocknungsmittelkapseln	124	
12.5	Ersetzen des SWS100 Dampfschlauchs	125	
12.6	Ersetzen des PR53SD Dampfabsperrventils	127	
12.7	Ersetzen des SWS100 Siebs	128	
12.8	Ersetzen der PR53SD Dampfwaschdüse	130	
13.	Modbus-Register	134	
13.1	Modbus-Register		
Anhai	ng A: Messverfahren	144	
Anhai	ng B: Analysieren des optischen Abbilds	146	
Wartu	ungs- und Kalibrierservices	149	
Gewä	Gewährleistung149		
Techr	Technischer Support		

Abbildungsverzeichnis

Abbildung	1	Refraktometerausrüstung	15
Abbildung	2	Struktur des PR53 Refraktometers	17
Abbildung	3	Anschließen von Leitern im Refraktometer (Modbus	
		RTU oder Indigo520)	19
Abbildung	4	Anschließen von Leitern im Refraktometer (Analogausgang).	.20
Abbildung	5	Schaltplan für PR53 und Indigo520	21
Abbildung	6	Schaltplan für PR53 und Analogausgang	21
Abbildung	7	Schaltplan für PR53 und Modbus RTU	22
Abbildung	8	Verdrahten des PR53 mit dem Indigo520	23
Abbildung	9	PR53 Hauptplatine	24
Abbildung	10	Messwertgeber Indigo520	25
Abbildung	11	Ebenen der Konzentrationsmessung	. 29
Abbildung	12	Einfluss der Toleranzzeit auf den Ausgangswert	. 35
Abbildung	13	Verbinden des Refraktometers mit dem Indigo520	38
Abbildung	14	Exponentielle Dämpfung	.45
Abbildung	15	Lineare Dämpfung	.46
Abbildung	16	Dämpfung der Anstiegsrate	. 47
Abbildung	17	Verbinden des Refraktometers mit Insight	. 49
Abbildung	18	Exponentielle Dämpfung	.62
Abbildung	19	Lineare Dämpfung	.63
Abbildung	20	Dämpfung der Anstiegsrate	. 64
Abbildung	21	Innensechskantschrauben an den	
		Gewindeschrauben der Endplatte der PR53M	
		Durchflusszelle (NPT-Armatur)	. 67
Abbildung	22	Innensechskantschrauben an den	
		Gewindeschrauben der Endplatte der PR53M	
		Durchflusszelle (integrierte Armaturen)	. 67
Abbildung	23	PR53AC Prozesstemperatur, Optionen Sanitary 2,5"	
		und Typ N (indikativ)	.90
Abbildung	24	PR53AC Prozessdruck	91
Abbildung	25	PR53AP, 170 mm Tiefe Prozesstemperatur (indikativ)	94
Abbildung	26	PR53AP, 42 mm und 66 mm Tiefe	
		Prozesstemperatur (indikativ)	. 94
Abbildung	27	PR53AP Prozessdruck	. 95
Abbildung	28	PR53GC Prozesstemperatur (indikativ)	98
Abbildung	29	PR53GC Prozessdruck	.98
Abbildung	30	PR53GP Prozesstemperatur (indikativ)	.101
Abbildung	31	PR53GP Prozessdruck	.101
Abbildung	32	PR53M Prozesstemperatur (indikativ)	104
Abbildung	33	PR53M Prozessdruck	104
Abbildung	34	PR53SD Prozesstemperatur (indikativ)	107
Abbildung	35	PR53W Prozesstemperatur (indikativ)	109
Abbildung	36	Materialien zum Recycling von PR53 und Durchflusszellen	. 113
Abbildung	37	Recycelbare Materialien des PR53M	.114
Abbildung	38	Recycelbare Materialien des PR53W	. 115

Abbildung 39	Recycelbare Materialien des PR53 SDI5	116
Abbildung 40	Installieren einer 2,5"-EPDM-Dichtung im PR53AC	
	Refraktometer	117
Abbildung 41	Installieren einer 2,5"-EPDM-Dichtung in Durchflusszellen	118
Abbildung 42	Installieren eines Rückschlagventils am PR53GP	
	Waschanschluss	119
Abbildung 43	Ersatzteil für PR53SD Absperrventil	121
Abbildung 44	Ersetzen der PR53 Trocknungsmittelkapseln	124
Abbildung 45	SWS100 Dampfschlauch	. 126
Abbildung 46	Dampfabsperrventil für PR53SD Waschsystem	127
Abbildung 47	Ersatzteil für SWS100 Sieb	. 129
Abbildung 48	PR53SD Dampfwaschdüsen-Baugruppe	131
Abbildung 49	Teile für PR53SD Dampfwaschdüse	132
Abbildung 50	Refraktometerprinzip	144
Abbildung 51	Optische Abbilder	145
Abbildung 52	Interpretation des optischen Abbilds	145

Tabellenverzeichnis

Tabelle	1	Dokumentversionen (Englisch)	11
Tabelle	2	Verwandte Handbücher	12
Tabelle	3	Produktbezeichnungen	14
Tabelle	4	Standardeinstellungen für die Modbus-Kommunikation	26
Tabelle	5	C-Parameter	30
Tabelle	6	Präventive Wartung	66
Tabelle	7	Hardware-Fehlerbeseitigung	76
Tabelle	8	Messfehlerbeseitigung	78
Tabelle	9	Fehlerstatus	82
Tabelle	10	Messstatusdetails	85
Tabelle	11	Messleistung der Serie PR53	88
Tabelle	12	Ein- und Ausgänge der Serie PR53	89
Tabelle	13	PR53AC Betriebsumgebung	89
Tabelle	14	PR53AC Konformität	91
Tabelle	15	Hygienekonformität von PR53AC	91
Tabelle	16	PR53AC Allgemeine Daten	92
Tabelle	17	PR53AP Betriebsumgebung	93
Tabelle	18	PR53AP Konformität	95
Tabelle	19	Hygienekonformität von PR53AP	95
Tabelle	20	PR53AP Allgemeine Daten	96
Tabelle	21	PR53GC Betriebsumgebung	97
Tabelle	22	PR53GC Konformität	98
Tabelle	23	PR53GC Allgemeine Daten	99
Tabelle	24	PR53GP Betriebsumgebung	100
Tabelle	25	PR53GP Konformität	102
Tabelle	26	PR53GP Allgemeine Daten	102
Tabelle	27	PR53M Betriebsumgebung	103
Tabelle	28	PR53M Konformität	105
Tabelle	29	PR53M Mechanische Spezifikationen	105
Tabelle	30	PR53SD Messgrößen	105
Tabelle	31	PR53SD Betriebsumgebung	106
Tabelle	32	PR53SD Konformität	107
Tabelle	33	PR53SD Mechanische Spezifikationen	107
Tabelle	34	PR53W Betriebsumgebung	108
Tabelle	35	PR53W Konformität	109
Tabelle	36	PR53W Mechanische Spezifikationen	110
Tabelle	37	Spezifikationen der Verbindungskabel	110
Tabelle	38	Ersatzteile	111
Tabelle	39	Zubehör	111
Tabelle	40	Materialien zum Recycling von PR53 und Durchflusszellen	113
Tabelle	41	Recycelbare Materialien des PR53M	114
Tabelle	42	Recycelbare Materialien des PR53W	115
Tabelle	43	Recycelbare Materialien des PR53 SDI5	116
Tabelle	44	Messdatenregister (schreibgeschützt)	134
Tabelle	45	Messdiagnoseregister (schreibgeschützt)	134

Tabelle 46	Statusregister (schreibgeschützt)	135
Tabelle 47	Fehlercodecodierung	135
Tabelle 48	Geräteinformationsregister (schreibgeschützt)	136
Tabelle 49	Konfigurationsregister	137
Tabelle 50	Konzentrationskurven-Konfigurationsregister	139
Tabelle 51	Prüfwertregister	142
Tabelle 52	Geräteidentifizierungsobjekte	142
Tabelle 53	Analyse des optischen Abbilds	146
Tabelle 54	Prismaskalierung	147

1. Über dieses Dokument

1.1 Versionsinformation

Dieses Dokument enthält Anleitungen zur Verwendung und Wartung von PR53 Prozessrefraktometern.

Tabelle 1	Dokumentversionen	(Englisch)
Tubene T	Dokumentversionen	(Linginsen)

Dokumentnum- mer	Datum	Beschreibung
M212898EN-E	April 2024	Dieses Dokument. Hinzugefügte Bereiche: • Unterstützung bei der Feldkalibrierung (Seite 32) • Kalibrierung (Seite 32)
		 BI-Justierung (Seite 33) Messungsdämpfung (Seite 34) Toleranzzeit (Seite 34) PR53M Wartungssicherheit (Seite 67) Technische Daten der PR53M (Seite 103) Technische Daten der PR53W (Seite 108) Ersatzteilanleitungen
		Aktualisierte Bereiche:
		 Indigo520 Benutzeroberflächen (Seite 25) PC-Software Insight (Seite 48) Modbus RTU (Seite 26) Analogausgang (Seite 27) Vaisala Indigo520 Messwertgeber (Seite 38) Allgemeine Einstellungen (Seite 39) Menü "Diagnose" (Seite 39) Präventive Wartung (Seite 66) Ersatzteile und Zubehör (Seite 110)
M212898EN-D	März 2024	Hinzugefügte Bereiche:
		 Entfernen des PR53SD Refraktometers vom Retraktor (Seite 68) Technische Daten der PR53SD (Seite 105)
		Aktualisierte Bereiche:
		Recyclinganweisungen (Seite 112)Modbus-Register (Seite 134)

Dokumentnum- mer	Datum	Beschreibung
M212898EN-C	Februar 2024	Hinzugefügte Bereiche: • Systemverdrahtung (Seite 20) • Überlegungen zur Verdrahtung (Seite 22) • Starten des eigenständigen Refraktometers (Seite 36) • Starten des Refraktometers mit dem Indigo520 (Seite 36) • Verwalten der Konzentrationskurven (Seite 31) • Leeres Abbild (Seite 58)
		Messstatusdetails (Seite 85) Aktualisierte Bereiche: Deutetaile (Seite 85)
		 Produktbezeichnungen (Seite 14) Produktübersicht des PR53 (Seite 15) Refraktometer-LEDs (Seite 17) Refraktometer-LEDs (Seite 24) Systemstart (Seite 36) Menü "Diagnose" (Seite 39) Konzentrationskurve (Seite 30) Parameter der Konzentrationskurve (Seite 30) Fehlerbeseitigungsmeldungen (Seite 76)

1.2 Verwandte Handbücher

Die aktuellen Versionen dieser Dokumente finden Sie unter docs.vaisala.com.

Tabelle 2 Verwandte Handbücher

PS

Dokumentnum- mer	Name
M212866EN	Vaisala Polaris Process Refractometer PR53AC Installation Guide
M212932EN	Vaisala Polaris Process Refractometer PR53AP Installation Guide
M212931EN	Vaisala Polaris Process Refractometer PR53GC Installation Guide
M212873EN	Vaisala Polaris Process Refractometer PR53GP Installation Guide
M213018EN	Vaisala Polaris Process Refractometer PR53M Installation Guide
M212953EN	Vaisala Polaris Process Refractometer PR53SD Installation Guide
M213029EN	Vaisala Polaris Process Refractometer PR53W Installation Guide
M212808EN	Vaisala Polaris Process Refractometer PR53 Prism Wash System User Guide
M212287EN	Vaisala Indigo500 Series Transmitters User Guide

1.3 Konventionen in der Dokumentation

WARNUNG! Eine **Warnung** weist auf eine ernste Gefahr hin. Lesen Sie vor der Inbetriebnahme die Sicherheitshinweise sorgfältig, um Gefahren zu vermeiden, die Verletzungen oder den Tod zur Folge haben können.

ACHTUNG! Mit dem Hinweis **Achtung** werden Sie vor einer möglichen Gefahr gewarnt. Lesen Sie vor der Inbetriebnahme die Sicherheitshinweise sorgfältig durch, um Beschädigungen des Produkts bzw. dem Verlust wichtiger Daten vorzubeugen.

Kennzeichnet wichtige Informationen zur Verwendung des Produkts.

Enthält Informationen zur effizienten Verwendung des Produkts.

Listet die zum Durchführen einer Aufgabe erforderlichen Tools auf.

Weist darauf hin, dass Sie sich während der Aufgabe Notizen machen müssen.

1.4 Marken

Vaisala®, Polaris[™] und Indigo[™] sind Marken von Vaisala Oyj.

Modbus® ist eine eingetragene Marke von Schneider Automation Inc.

Alle anderen Produkt- oder Firmennamen, die in dieser Publikation erwähnt werden, sind Handelsnamen, Marken oder eingetragene Marken der jeweiligen Eigentümer.

1.5 Patentvermerk

Dieses Produkt wird durch die folgenden Patente und Patentanmeldungen sowie die entsprechenden nationalen Rechte geschützt:

• US2019391074A1

2. Produktübersicht

2.1 Sicherheit

Dieses Produkt wurde gemäß IEC 61010-1 auf Sicherheit geprüft. Beachten Sie folgende Sicherheitsvorkehrungen:

WARNUNG! Nur lizenzierte Fachleute dürfen elektrische Komponenten installieren. Sie müssen lokale und staatliche Gesetze und Vorschriften einhalten.

2.1.1 Schutz vor elektrostatischer Entladung

Elektrostatische Entladungen (ESD) können elektronische Schaltungen beschädigen. Die Produkte von Vaisala sind bei sachgemäßem Gebrauch ausreichend vor elektrostatischen Entladungen (ESD) geschützt. Das Berühren, Entfernen oder Einsetzen von Objekten im Gehäuse kann jedoch zur Beschädigung des Produkts durch elektrostatische Entladung führen.

Vermeidung der Entladung hoher statischer Spannungen im Produkt:

- Handhaben Sie gegenüber elektrostatischen Entladungen empfindliche Komponenten ausschließlich an einem richtig geerdeten und ESD-geschützten Arbeitstisch oder erden Sie sich mit einem Armband samt ohmschem Leiter.
- Wenn Sie keine der genannten Vorsichtsmaßnahmen treffen können, müssen Sie mit einer Hand ein leitfähiges Teil des Chassis anfassen, bevor Sie Teile berühren, die gegenüber elektrostatischen Entladungen (ESD) empfindlich sind.
- Halten Sie die Komponentenplatinen an den Rändern und berühren Sie keinesfalls die Kontakte.

2.2 Produktbezeichnungen

Tabelle 3 Produktbezeichnungen

Komponente	Name
CCD-Kamera	Charge Coupled Device, Zeilenkamera in der Refraktometeroptik.
LB	Heller Bereich, Ausschnitt eines optischen Abbilds, der dem reflektierten Licht entspricht.
ВІ	Brechungsindex. Diese Zahl gibt an, wie stark der Weg des Lichts beim Eintritt in ein Material gebogen oder gebrochen wird.
QF	Qualitätsfaktor. Eine dimensionslose Größe, die die Qualität (Schärfe) des opti- schen Abbilds darstellt. Änderungen beim QF können auf geschichtete Ablage- rungen auf dem Prisma hinweisen.

2.3 Produktübersicht des PR53

Das Inline-Refraktometer PR53 ist ein Instrument zum Messen der Flüssigkeitskonzentration in der Prozessleitung. Die Messung basiert auf der Lichtbrechung im Prozessmedium – eine genaue und sichere Methode zur Messung von Konzentrationen in Flüssigkeiten.

Abbildung 1 Refraktometerausrüstung

- ¹ Vaisala Polaris[™] Prozessrefraktometer
- 2 Verbindungskabel
- 3 Messwertgeber Vaisala Indigo520 (optional)

Das Inline-Refraktometer (1) misst den Brechungsindex (BI) und die Temperatur des Prozessmediums. Mithilfe eines vordefinierten Konzentrationsmodells berechnet das Refraktometer anhand der Messdaten die Konzentration. Der Ausgangswert kann über den konfigurierbaren integrierten Analogausgangskanal oder über die Modbus RTU-Schnittstelle direkt vom Refraktometer abgelesen werden. Alternativ kann das Refraktometer über das Verbindungskabel (2) mit dem optionalen Messwertgeber Indigo520 (3) verbunden werden.

Der Indigo520 ist ein konfigurierbarer Messwertgeber mit 4 konfigurierbaren analogen Ausgangskanälen, 2 binären Kontaktsteuerungsrelais, Modbus TCP/IP-Ausgang, einem Webserver und einem grafischen Touchscreen-Display. Die aktuellen Werte und Trenddaten können aus dem Indigo520 ausgelesen werden, der auch einen lokalen Datenlogger enthält. An einen Messwertgeber Indigo520 können ein oder zwei Refraktometer angeschlossen werden. Zu Servicezwecken kann das Refraktometer PR53 über einen USB-Adapter und die Software Vaisala Insight an einen PC angeschlossen werden.

2.4 PR53 Refraktometermodelle

Es gibt unterschiedliche PR53 Refraktometermodelle. Jedes Modell ist für unterschiedliche Prozessanforderungen konzipiert.

- Das **Sanitary-Kompaktrefraktometer Polaris PR53AC von Vaisala** ist für die Messung von Flüssigkeitskonzentrationen z. B. in Brix ausgelegt.
- Das Sanitary-Sondenrefraktometer Vaisala Polaris PR53AP wurde f
 ür Kunden aus Branchen wie Lebensmittel und Getr
 änke, Milchprodukte und Brauereien sowie OEMs entwickelt, um Fl
 üssigkeitskonzentrationen beispielsweise in Brix zu messen. Einsatzbereiche sind Marmeladenkocher, Mischtanks usw.

- Das Universal-Kompaktrefraktometer Polaris PR53GC von Vaisala wurde zum Messen der Konzentrationen von Säuren, Laugen, Alkoholen, Kohlenwasserstoffen, Lösemitteln und verschiedenen anderen Lösungen entwickelt.
- Das Universal-Sondenrefraktometer Polaris PR53GP von Vaisala wurde zum Messen der Konzentrationen von Zuckern/Brix, Säuren, Laugen, Kohlenwasserstoffen, Lösemitteln und verschiedenen anderen Lösungen entwickelt.
- Das Vaisala Polaris Prozessrefraktometer PR53M mit PTFE-Gehäuse wurde für die Messung der Konzentrationen aggressiver Chemikalien – z. B. Salzsäure (HCI), Natriumhydroxid (NaOH), Natriumchlorid (NaCl) und Schwefelsäure (H₂SO₄) – in der Chemie- und Halbleiterindustrie entwickelt.
- Das einziehbare Prozessrefraktometer Polaris PR53SD Safe-Drive von Vaisala wurde f
 ür sicherheitskritische Messungen – z. B. Konzentration der verbrannten Schwarzlauge – in Zellstofffabriken entwickelt. Das Safe-Drive System mit einem PR53SD Refraktometer ermöglicht das sichere Einsetzen und Entnehmen des Sensors, w
 ährend die Prozessleitung in Betrieb ist.
- Das Ventilgehäuse-Prozessrefraktometer Vaisala Polaris PR53W dient zur Messung der Konzentrationen aggressiver Chemikalien wie Schwefelsäure, Salzsäure (HCI) und Natriumhydroxid (NaOH) in Produktionsleitungen von Branchen wie Chemie, Biochemie und Pharmazie.

Das PR53AC und das PR53AP wurden für den Einsatz in Anwendungen mit Lebensmittelkontakt entwickelt und erfüllen die Anforderungen der Hygienestandards 3-A und EHEDG.

Abbildung 2 Struktur des PR53 Refraktometers

- 1 Hauptplatine
- 2 CCD-Gerät
- 3 Tellerfedern
- 4 CORE-Modul
- 5 Lichtquelle
- 6 Prisma
- 7 Prismadichtung
- 8 Integrierter Temperatursensor

Das Messprisma (6) ist bündig in die Oberfläche der Sondenspitze eingebaut. Das Prisma (6) und alle anderen optischen Komponenten sind fest am massiven CORE-Modul (4) befestigt, das mit Federn (3) gegen die Prismadichtung (8) gedrückt wird. Die Lichtquelle (5) ist eine gelbe LED, die Licht mit einer Wellenlänge von 589 nm (Wellenlänge der Natrium-D-Linie) aussendet. Dabei handelt es sich um einen Standardwert für den Brechungsindex in der Literatur. Die Hauptplatine (1) empfängt die Rohdaten vom CCD-Gerät (2) und vom Prozesstemperatursensor (7) und berechnet dann den Brechungsindex Bl, die

Prozesstemperatur T und die Prozesskonzentration nach Maßgabe einer vordefinierten Konzentrationskurve. Diese Informationen werden dem Benutzer über einen integrierten analogen Ausgangskanal, den digitalen Modbus RTU oder einen Messwertgeber Indigo520 übermittelt.

2.6 Lagerung und Transport

Die Luftpolsterverpackung verhindert Beschädigungen von Komponenten des Refraktometers. Transportieren Sie das Gerät immer in der Originalverpackung.

Entfernen Sie vor dem Einlagern Schmutz und Fett vom Refraktometer und vergewissern Sie sich, dass das Gerät trocken ist.

Lagerbedingungen:

- Temperatur: -40 ... +40 °C
- Feuchte: Nicht kondensierend

3. Refraktometeranschlüsse

3.1 Refraktometeranschlüsse

Das Refraktometer verfügt über einen integrierten isolierten Analogausgangskanal mit 4-20 mA, der den Ausgang des Refraktometers darstellt. Der Ausgangsbereich und die technische Einheit hängen von der verwendeten Konzentrationskurve ab. Wenn die Einheit beispielsweise mit einem 0-100 ° Brix-Ausgang konfiguriert ist, beträgt die Skalierung des Ausgangskanals 4 mA = 0 °Brix und 20 mA = 100 °Brix. Der Fehlerstatus-Anzeigepegel für den Fehlerzustand beträgt standardmäßig 3,6 mA. Der Ausgang ist konfigurierbar: Der Ausgangswert (Brechungsindex, Temperatur, Konzentration, Qualitätsfaktor), die Skalierung und der Fehlerstatus-Anzeigepegel können mit der Software Vaisala Insight und einem USB-Adapter konfiguriert werden.

Der Verbindungskopf hat auch einen RS-485-Anschluss. Dadurch kann das Refraktometer direkt als Modbus RTU-Servergerät verwendet werden. Alternativ kann derselbe Anschluss verwendet werden, um das Refraktometer an einen Messwertgeber Indigo520 anzuschließen.

Zur digitalen Kommunikation siehe Modbus RTU (Seite 26).

Abbildung 3 Anschließen von Leitern im Refraktometer (Modbus RTU oder Indigo520)

Weitere Informationen

Starten des Refraktometers mit dem Indigo520 (Seite 36)

3.2 Systemverdrahtung

Die analogen und Modbus RTU-Verdrahtungskonfigurationen sind Beispiele für die Systemverdrahtung. Ihr System kann von den hier dargestellten Verdrahtungsbeispielen abweichen.

Es wird empfohlen, die Abschirmung an die Kabelverschraubung oder die Metall-Kabelkanalverschraubung anzuschließen.

Indigo520-Verdrahtung

Abbildung 5 Schaltplan für PR53 und Indigo520

Analoges System

Empfängersystem (analog, 4 ... 20 mA)

Abbildung 6 Schaltplan für PR53 und Analogausgang

Modbus RTU-System

Abbildung 7 Schaltplan für PR53 und Modbus RTU

3.3 Überlegungen zur Verdrahtung

Die Gehäuseerdung und die Erdungsklemme sind elektrisch verbunden. Die Erdung kann entweder durch Anschließen der Kabelabschirmung an die entsprechende Klemme im Verdrahtungskopf oder alternativ durch Anschließen der Kabelabschirmung an die Kabelverschraubung erfolgen.

Das integrierte mA-Signal ist galvanisch von der Versorgungsspannung getrennt, um die Möglichkeit von Erdschleifen zu minimieren.

Die Signalerde des integrierten RS485-Busses ist galvanisch mit der Masse der Stromversorgung verbunden. Um Erdschleifen im RS485-Bus zu vermeiden, sollten Sie eine Erdung in Erwägung ziehen.

Die Signalkabelabschirmung sollte mit der Gehäuseerdung des PR53 verbunden werden. Eine Erdung über die Kabelverschraubung wird empfohlen. Alternativ kann die Kabelabschirmung mit dem SHIELD-Pin im Verdrahtungskopf verbunden werden.

Erwägen Sie die Erdung des PR53 Refraktometers in Situationen, in denen das Gerät an nicht leitfähige Rohrleitungen (z. B. Glasfaser) angeschlossen ist, um elektrostatische Aufladung zu vermeiden.

Abbildung 8 Verdrahten des PR53 mit dem Indigo520

4. Benutzeroberflächen

4.1 Refraktometer-LEDs

Die LED-Anzeigen zeigen den Status des Refraktometers bei Verwendung ohne den Messwertgeber Indigo520 an.

Die Farbe der LED entspricht dem Schweregrad:

- Grün zeigt an, dass das Refraktometer eingeschaltet ist und normal funktioniert.
- **Grünes Blinken** zeigt eine erfolgreiche digitale Kommunikation mit dem RS485-Anschluss an. Wenn die grüne LED blinkt, hat das Refraktometer erfolgreich eine Modbus-Anfrage empfangen und darauf geantwortet oder erfolgreich mit dem Messwertgeber Indigo520 kommuniziert.
- **Gelb** zeigt den Warnstatus an. Sie müssen das Refraktometer mit Modbus, dem Messwertgeber Indigo520 oder der Software Insight verbinden.
- Rot zeigt einen kritischen Fehler an, der das Eingreifen des Benutzers erfordert. Wenn die rote LED leuchtet, muss das Refraktometer möglicherweise zur Wartung an Vaisala geschickt werden. Kontaktieren Sie helpdesk@vaisala.com.

Die Fehlercodes können entweder über den Messwertgeber Indigo520, den Modbus RTU-Anschluss oder die Software Vaisala Insight mit einem USB-Adapter gelesen werden.

Abbildung 9 PR53 Hauptplatine

- 1 Serviceschnittstelle
- 2 LED-Anzeigen

4.2 Indigo520 Benutzeroberflächen

Vaisala Indigo520 ist ein konfigurierbarer Messwertgeber, der entweder ein oder zwei Refraktometer der PR53 Serie aufnehmen kann. Der Messwertgeber kann Messdaten und Diagnoseinformationen vor Ort anzeigen und per Analogsignal, Steuerrelais oder Modbus TCP/IP-Protokoll an Automatisierungssysteme übertragen.

Der Indigo520 kann mit zwei Benutzeroberflächen verwendet werden:

- Touchscreen
- Weboberfläche

Abbildung 10 Messwertgeber Indigo520

Merkmale und Funktionen des Indigo520:

- Benutzerfreundlicher Touchscreen
- Webbasierte Benutzeroberfläche
- Datenprotokollierung
- Status- und Diagnoseinformationen
- Diagnose des optischen Abbilds
- Reinigungssystemsteuerung

Das PR53 Prismareinigungssystem wird vom Indigo520 gesteuert und konfiguriert. In den meisten Einsatzbereichen bleibt das Prisma aufgrund des Selbstreinigungseffekts sauber. Wenn sich Belag bildet, ist für Ihre Anwendung möglicherweise ein Reinigungssystem erforderlich.

Weitere Informationen zur Verwendung des Indigo520 siehe Indigo500 User Guide (M212287EN).

Weitere Informationen

- Herstellen der Verbindung zum Indigo520 (Seite 38)
- Vaisala Indigo520 Messwertgeber (Seite 38)

4.3 PC-Software Vaisala Insight

Die PC-Software Vaisala Insight ist eine Servicesoftware für Sonden und andere mit Indigo kompatible Vaisala Geräte. Insight ist für Microsoft Windows®-Betriebssysteme (nur 64-Bit-Versionen) verfügbar.

Die Software Insight bietet folgende Möglichkeiten:

- Geräteinformationen und -status anzeigen
- Echtzeitmesswerte anzeigen
- Verwalten der Konzentrationskurven
- Kalibrierung und Einstellung des Geräts.
- Führen Sie kurzfristige Datenprotokollierungen durch, beispielsweise für Labortests oder zur Auswertungszwecken.

Sie können Insight unter www.vaisala.com/insight herunterladen.

Das Refraktometer kann über einen Vaisala Indigo USB-Adapter (Bestellnummer USB2) mit Insight verbunden werden.

Weitere Informationen

Herstellen der Verbindung zur Software Insight (Seite 48)

4.4 Modbus RTU

Das Modbus RTU-Protokoll ist über den RS-485-Anschluss verfügbar. Der RS-485-Anschluss kann als Modbus RTU-Servergerät verwendet werden. Unterstützt werden die Modbus-Funktionscodes 3 (Lesen von Ausgangs-Registern) und 4 (Lesen von Eingangs-Registern). Die Standard-ID des Modbus lautet 240. Die ID kann über die Serviceschnittstelle mithilfe der Software Vaisala Insight und eines USB-Adapters geändert werden.

In der folgenden Tabelle werden die Standard-Kommunikationseinstellungen aufgelistet, die bei werkseitiger Aktivierung von Modbus (bei der Bestellung gewählt) verwendet werden.

Beschreibung	Standardwert
Baud rate	19200
Parität	Keine Parität
Anzahl der Datenbits	8
Anzahl der Stoppbits	2

Tabelle 4 Standardeinstellungen für die Modbus-Kommunikation

Weitere Informationen

- Konfigurieren der Modbus-Kommunikationseinstellungen mit Insight (Seite 64)
- Modbus-Register (Seite 134)

4.5 Analogausgang

Die PR53 Prozessrefraktometer verfügen über einen skalierbaren Analogausgangskanal mit Stromschleife (4–20 mA). Der Ausgangsbereich und die technische Einheit hängen von der verwendeten Konzentrationskurve ab: Wenn die Einheit mit einem 0-100 ° Brix-Ausgang konfiguriert ist, beträgt die Skalierung des Ausgangskanals 4 mA = 0 °Brix und 20 mA = 100 °Brix.

Der Ausgang ist konfigurierbar: Die Ausgangsvariable (Brechungsindex, Temperatur, Konzentration, Qualitätsfaktor), die Skalierung und der Fehlerstatus-Anzeigepegel können mit der Software Vaisala Insight und einem USB-Adapter konfiguriert werden. Die technische Einheit der Konzentration wird durch die Konzentrationskurve definiert und kann nur durch Modifikation der Konzentrationskurve geändert werden.

Wenn das PR53 an den Indigo520 angeschlossen ist, stehen vier analoge Ausgangskanäle zur Verfügung. Der Signaltyp (0–1/5/10 V, 0/4–20 mA) im Indigo520 ist vom Benutzer konfigurierbar. Der integrierte Analogausgangskanal und die Analogausgänge des Indigo520 sind voneinander unabhängig und können auch gleichzeitig genutzt werden.

PR53 Prozessrefraktometer verfügen über zwei konfigurierbare Fehlerstatusebenen.

- Standard: 3,4 mA
- Sekundärer Fehlerstatus: Aktiviert, 3,2 mA

Informationen zum Konfigurieren des Analogausgangs mit dem Indigo520 finden Sie unter Indigo500 User Guide (M212287EN).

Informationen zum Konfigurieren des Analogausgangs mit Insight finden Sie unter Konfigurieren des Analogausgangs (Seite 59).

Weitere Informationen

- Konfigurieren des Analogausgangs (Seite 59)
- Fehlerstatus (Seite 81)

5. Konzentrationsmessung

5.1 Konzentrationsmessung im Überblick

Die Konzentrationsmessung besteht aus 6 Ebenen.

Abbildung 11 Ebenen der Konzentrationsmessung

- 1 Die Lichtbereichsdaten stammen vom CCD-Element, die Temperaturdaten vom Pt-1000-Temperaturelement. Die Grenzlinie befindet sich im hellen Bereich, skaliert auf 0–100 %.
- 2 BI-Justierung: Der tatsächliche Brechungsindex BI wird über den hellen Bereich berechnet. Die Temperatur wird aus dem Pt-1000 Widerstand berechnet. Die BI-Messung jedes Refraktometers kann mit Standard-Referenzflüssigkeiten verifiziert werden.
- 3 Konzentrationskurve: Das Refraktometer berechnet die Rohkonzentration unter Berücksichtigung der chemischen Kurve aus BI und Temperatur. Das Ergebnis ist der temperaturkompensierte Rohkonzentrationswert.
- 4 Feldjustierung: Eine Justierung des Rohkonzentrationswerts kann erforderlich sein, um Prozessbedingungen zu kompensieren oder die Justierung an die Laborergebnisse anzupassen. Die Feldjustierungsparameter werden verwendet, um aus der Rohkonzentration die justierte Konzentration zu berechnen. Die justierte Konzentration wird als Konzentration bezeichnet. Wenn keine Justierung erfolgt, sind Rohkonzentration und justierte Konzentration gleich.
- 5 Dämpfung: Sie können eine Signaldämpfung zuweisen, um den Einfluss des Prozessrauschens zu reduzieren.
- 6 Ausgangssignal: Der Bereich des 4–20 mA-Signals wird durch den Bereich der jeweiligen Konzentrationskurve definiert.

Weitere Informationen

Messverfahren (Seite 144)

5.2 Konzentrationskurve

Die Konzentrationskurve besteht aus:

- den tatsächlichen Konzentrationskurvenparametern (C-Parameter, technische Einheit sowie gültige Temperatur- und Konzentrationsbereiche),
- den zugehörigen Feldjustierungsparametern (F-Parameter) und
- dem Aliasnamen.

5.2.1 Parameter der Konzentrationskurve

Die Konzentrationskurve ist die theoretische Konzentrationskurve basierend auf Bl und Temperatur. Sie ist durch einen Satz von 16 Parametern (C-Parameter) definiert.

Eine Konzentrationskurve ist für das gegebene Prozessmedium (z. B. Saccharose oder Natriumhydroxid) spezifisch. Der Parametersatz wird von Vaisala bereitgestellt. Ändern Sie die C-Parameter der chemischen Kurve nur, wenn das Prozessmedium gewechselt wird.

Das Refraktometer kann in seinem Speicher vier verschiedene Konzentrationskurven speichern. Die verwendete Konzentrationskurve kann mit dem Messwertgeber Indigo520, der Software Vaisala Insight oder der Modbus RTU-Schreibfunktion umgeschaltet werden.

Die primäre Methode zur Korrektur der Konzentrationsmessung ist die Feldjustierung. In manchen Fällen reicht die lineare Feldjustierung jedoch möglicherweise nicht aus und die C-Parameter müssen möglicherweise feinjustiert werden. Wenden Sie sich in diesem Fall an den Vaisala Helpdesk für Support. Neben den C-Parametern enthält die Konzentrationskurve noch weitere Informationen (beispielsweise Maßeinheiten, gültige Konzentrations- und Temperaturbereiche usw.).

Tabelle 5 C-Parameter

C ₀₀	C ₀₁	C ₀₂	C ₀₃
C ₁₀	C ₁₁	C ₁₂	C ₁₃
C ₂₀	C ₂₁	C ₂₂	C ₂₃
C ₃₀	C ₃₁	C ₃₂	C ₃₃

Weitere Informationen

- Feldjustierungsparameter (Seite 30)
- Ändern der Konzentrationskurven (Seite 41)

5.2.2 Feldjustierungsparameter

Die Feldjustierung kann nach folgendem Muster berechnet werden: Justierte Konzentration = Rohkonzentration × Feldverstärkung + Feldoffset

Jede Konzentrationskurve verfügt über eine eigene Feldjustierung. Wenn Sie die Konzentrationskurve ändern, ist die Feldjustierung nicht mehr identisch.

Eine präzise Kalibrierung wird nur erreicht, wenn die Probe richtig genommen wird. Achten Sie insbesondere auf folgende Details:

- Feldjustierungen werden verwendet, um etwaige Ungenauigkeiten des Konzentrationsmodells oder die Prozessbedingungen betreffende Faktoren auszugleichen. Die Feldprobenwerte müssen vom jeweils abzugleichenden Gerät stammen und nicht etwa von einem Laborgerät.
- Das Probenahmeventil und das Refraktometer müssen im Prozess nahe beieinander installiert sein.

WARNUNG! Tragen Sie bei Verwendung des Probenahmeventils und bei der Handhabung der Probe für den Prozess angemessene Schutzkleidung.

- Lassen Sie die Probenahme laufen, bevor Sie mit dem Erfassen von Datenpunkten beginnen, damit keine im Probenahmeventil zurückgebliebene Prozessflüssigkeit entnommen wird.
- Lesen Sie den Rohkonzentrationswert exakt zum Zeitpunkt der Probenahme ab. Am einfachsten geschieht dies mit der Funktion "Feldprobe". Der Wert jedes Samples entspricht dem Durchschnitt von 10 aufeinanderfolgenden Messungen. Das erhöht die Genauigkeit und reduziert den Einfluss von Prozessschwankungen.
- Fangen Sie die Probe in einem dichten Behälter auf, um Verdunstung zu vermeiden.

Die Offline-Kalibrierung mit Prozessflüssigkeit liefert nur äußerst selten zuverlässige Ergebnisse, da folgende Aspekte Probleme verursachen:

- Geringer Durchfluss führt zu einem nicht repräsentativen Film der Probe auf dem Prisma.
- Verdunstung der Probe bei hoher Temperatur sowie ungelöste Feststoffe bei niedriger Temperatur führen zu Abweichungen von den im Labor bestimmten Werten.
- Gealterte Proben sind nicht repräsentativ.
- Außenlicht fällt auf das Prisma.

Weitere Informationen

- Feldprobe (Seite 41)
- Ändern der Konzentrationskurven (Seite 41)
- Parameter der Konzentrationskurve (Seite 30)
- Ändern der Konzentrationskurven (Seite 52)

5.2.3 Verwalten der Konzentrationskurven

Es gibt drei verschiedene Fälle, in denen Sie möglicherweise die Konzentrationskurve ändern müssen:

- Beim Umschalten von der aktiven Konzentrationskurve auf eine andere im Refraktometer konfigurierte Kurve. Beispielsweise beim Umschalten zwischen Brix, Öchsle und NaOH. Hierfür kann der Indigo520, Insight oder Modbus RTU verwendet werden.
- Beim Ändern einer vorkonfigurierten Konzentrationskurve oder beim Hinzufügen einer völlig neuen Kurve. Beispielsweise bei einer Änderung von Brix 0–100°Bx auf NaOH 0– 50 g/l. Hierfür wird die Software Insight verwendet.
- Beim Feinabstimmen der C-Parameter einer vorkonfigurierten Konzentrationskurve. Hierfür kann der Indigo520 oder Insight verwendet werden.

Weitere Informationen

- Ändern der Konzentrationskurven (Seite 52)
- Hochladen der Konzentrationskurven (Seite 52)

5.3 Unterstützung bei der Feldkalibrierung

Wenn die lineare Offset-/Verstärkungsfeldjustierung nicht ausreicht, ist eine nichtlineare Justierung erforderlich. Wenn zur Justierung eine Verbesserung der Temperaturkompensation (Feinabstimmung der C-Parameter) erforderlich ist, kontaktieren Sie helpdesk@vaisala.com.

Wenn Sie etwas messen möchten, für das es keine gebrauchsfertige Konzentrationskurve gibt, können Sie mittels einer Feldprobe und Laborergebnissen eine neue Kurve definieren. Alternativ kann eine neue Kurve auch bei Vaisala mithilfe von Labormethoden definiert werden. Kontaktieren Sie helpdesk@vaisala.com.

5.4 Kalibrierung

Die Kalibrierung stellt sicher, dass die Messung des Refraktometers genau ist.

Das Refraktometer wird mit einem rückverfolgbaren Kalibrierzertifikat geliefert, das die Erfüllung der Messkriterien bei Auslieferung bestätigt.

Um die Messgenauigkeit sicherzustellen, gibt es zwei Möglichkeiten: den Vergleich der Onlinemessung mit der Laborreferenz (Probenahme) und die BI-Kalibrierung.

Das Refraktometer ist ein sehr stabiles Instrument. Das Kalibrierintervall wird je nach Anwendung, Genauigkeitsanforderung, Umgebungsbedingungen und Qualitätssystem oder beispielsweise den Anforderungen Dritter definiert.

Das **Vergleichen der Onlinemessung mit Laborergebnissen** ist die primäre Methode, da sie die komplette Messung validiert, einschließlich der Auswirkungen der Umgebungsbedingungen auf die Messstelle und beispielsweise von möglichen geschichteten Ablagerungen auf dem Prisma. Außerdem handelt es sich hierbei um eine einfache Methode, da Sie das Refraktometer nicht aus dem Prozess entfernen müssen.

Folgende Umstände beeinflussen die Kalibrierung:

- Genauigkeit und Wiederholbarkeit der Laborreferenz
- Rückverfolgbarkeit der Laborreferenz und ihrer eigenen Kalibrierungen
- Probenahme und die damit verbundenen möglichen Fehler (Repräsentativität der Probe und Veränderung der Probe, Verdunstung usw.)
- Messbereich: Die auf der Laborreferenz basierende Methode deckt möglicherweise nicht den gesamten Messbereich ab.

Eine Kalibrierung ist erforderlich, wenn die Optik des Geräts gewartet wird und eine BI-Justierung durchgeführt werden muss. Mit der Kalibrierung wird ermittelt, ob im definierten Messbereich des Geräts eine Messabweichung vorliegt. Die BI-Justierung dient der Behebung des Fehlers.

Die BI-Justierung kann nur mit Insight durchgeführt werden.

Die **BI-Kalibrierung** ist eine sekundäre Methode, die mit BI-Referenzflüssigkeiten durchgeführt werden kann. Es handelt sich um eine Offline-Methode, für die das Refraktometer aus dem Prozess entfernt werden muss.

Bei der BI-Kalibrierung werden der gesamte Messbereich validiert und der technische Zustand des Refraktometers überprüft, beispielsweise die Erosion des Prismas.

Bei der BI-Kalibrierung werden jedoch andere Quellen für Unsicherheiten bei der Konzentrationsmessung nicht berücksichtigt, wie etwa die Umgebungsbedingungen und die Genauigkeit der Konzentrationskurve.

Weitere Informationen

- BI-Kalibrierung (Seite 42)
- BI-Justierung (Seite 56)

5.5 BI-Justierung

Das Refraktometer wurde im Werk justiert. Normalerweise ist keine Nachjustierung des Refraktometers erforderlich, es sei denn, die Hauptplatine wurde entfernt oder das Prisma wurde während der Wartung ausgetauscht.

Vaisala bietet im Rahmen einer Wartung im Werk einen Service zur Überprüfung der Funktionalität des Refraktometers sowie bei Bedarf zur Justierung des Geräts an.

Jedes Refraktometer verfügt über seine eigenen BI-Justierungsparameter, die im Vaisala Werk berechnet wurden. Dies sind die A-Parameter. Durch die Justierung verändern sich die A-Parameter.

Die Justierung des Refraktometers erfolgt über eine möglichst genaue BI-Kalibrierung. Hierfür kann Vaisala Insight oder der Indigo520 verwendet werden. Nach der BI-Kalibrierung kann die BI-Justierung mithilfe von Insight erfolgen. Dadurch wird die Berechnung des Brechungsindex angepasst.

Die Qualität der Justierung hängt von der BI-Kalibrierung und den mit ihr verbundenen Umständen ab. Wenden Sie sich an Ihren Händler vor Ort oder an helpdesk@vaisala.com, wenn Ihr Gerät justiert werden muss.

Eine Justierung der Temperaturmessung des Refraktometers ist im Normalfall nicht erforderlich. Der Feldoffset sollte ausreichend sein. Die Temperaturjustierung kann jedoch mit Insight durchgeführt werden.

Weitere Informationen

Temperaturjustierung (Seite 57)

5.6 Messungsdämpfung

Bei PR53 Refraktometern kann eine konfigurierbare Messungsdämpfung verwendet werden.

Durch die Messungsdämpfung werden das Rauschen bei der Messung verringert und die Ansprechzeit der Messung so justiert, dass sie der Ansprechzeit des Prozesses und der zugehörigen Steuerkreise entspricht.

Es gibt drei Arten der Messungsdämpfung:

- Exponentielle Dämpfung
- Lineare Dämpfung
- Anstiegsrate

Die Standardeinstellungen für die Dämpfung bei PR53 Refraktometern lauten wie folgt:

- Dämpfungsart: exponentiell
- Dämpfungszeit: 20 s
- Toleranzzeit: 5 s
- Anstiegsrate: 10.0.

Weitere Informationen

- Konfigurieren der Messungsdämpfung (Seite 44)
- Konfigurieren der Messungsdämpfung (Seite 60)

5.6.1 Toleranzzeit

Die Toleranzzeit kann für Prozesse mit unregelmäßigen Unterbrechungen der Messungen aufgrund einer nicht repräsentativen Probe auf dem Prisma genutzt werden. Dies geschieht typischerweise, wenn die Prozessflüssigkeit größere Blasen enthält. Wenn das optische Abbild interpretiert werden kann, wirkt sich die Toleranzzeiteinstellung nicht aus. Wenn das optische Abbild nicht mehr interpretiert werden kann (Statusmeldungen, z. B. **No liquid detected.**; **No optical image.**; **Prism coating detected.**), wird der Messwert für die angegebene Anzahl Sekunden gehalten.

Eine Einstellung von 10 Sekunden stellt beispielsweise sicher, dass ein **No liquid detected.**-Status für weniger als 10 s nicht zu einem Einbruch im Ausgangssignal führt. Die Werkseinstellung ist 5 s. Unter **Calibration > Outputs > Tolerance time** können Sie die Toleranzzeit einstellen.

Der Toleranzzeitzähler wird zurückgesetzt, sobald eine repräsentative Probe auf dem Prisma erkannt wird (wenn z. B. der BI-Wert bestimmt werden kann). Die folgende Abbildung illustriert dieses Verhalten anhand eines unregelmäßigen Messsignals.

- Wenn der Signalabfall kürzer als die Toleranzzeit ist (z. B. bei t = 10 s oder t = 35 s in der Abbildung), fällt das Ausgangssignal nicht ab.
- Dauert der Signalabfall so lange, dass der Toleranzzeitzähler Null erreicht, fällt das Ausgangssignal (bei t = 80 s in der Abbildung) ab.

Abbildung 12 Einfluss der Toleranzzeit auf den Ausgangswert

6. Systemstart

6.1 Systemstart

Das PR53 ist werkseitig konfiguriert und sofort verwendbar. Das Konzentrationsmodell wurde gemäß der Bestellung eingerichtet. Wenn das Konzentrationsmodell geändert werden muss, kann dies mithilfe der Serviceschnittstelle und der Software Insight erfolgen.

Weitere Informationen

Hochladen der Konzentrationskurven (Seite 52)

6.1.1 Starten des eigenständigen Refraktometers

1. Verbinden Sie das Refraktometer entweder über den Analogausgangskanal oder Modbus RTU mit dem Empfängersystem.

Das Refraktometer ist nun bereit zur Messung und Übertragung von Messsignalen.

- 2. Überprüfen Sie die LED. Ein grünes Licht zeigt an, dass der Strom eingeschaltet ist.
- Wenn Modbus RTU verwendet wird, ändern Sie die RS-485-Kommunikationsparameter und die Modbus-Geräte-ID nach Bedarf mithilfe der Software Insight und eines USB-Adapters.
- 4. Überprüfen Sie nach der Verdrahtung, ob die grüne LED blinkt, wenn das Master-System die Werte abfragt.

Dies zeigt an, dass das Refraktometer erfolgreich eine Anfrage empfangen und auf eine an seine Geräte-ID gerichtete Modbus-Anfrage geantwortet hat.

Weitere Informationen

- Systemverdrahtung (Seite 20)
- Konfigurieren der Modbus-Kommunikationseinstellungen mit Insight (Seite 64)

6.1.2 Starten des Refraktometers mit dem Indigo520

- Verbinden Sie das Refraktometer mithilfe des Verbindungskabels mit dem Messwertgeber Indigo520. Stellen Sie sicher, dass das 8. Zeichen des Konfigurationscodes auf dem Typenschild des Indigo520 ein "L" ist.
 - Verbinden Sie die Leiter vom Refraktometer gemäß dem Kapitel "Refraktometeranschlüsse" mit Sondenanschluss 1 oder 2 des Indigo520.

Der Messwertgeber Indigo520 versorgt das Refraktometer mit Strom und initialisiert automatisch die Kommunikation mit dem Sensor.
3. Nachdem das Refraktometer erkannt wurde, konfigurieren Sie die numerischen und grafischen Ansichten und analogen Ausgangskanäle mithilfe der Anzeige des Indigo520 oder der Browseroberfläche.

Einzelheiten zu diesem Thema finden Sie unter Indigo500 User Guide (M212287EN).

Wenn das optionale Prismareinigungssystem installiert ist, müssen Sie einen Prismareinigungstest durchführen. Siehe PR53 Prism Wash System User Guide (M212808EN).

Weitere Informationen

Refraktometeranschlüsse (Seite 19)

7. Verwenden des Refraktometers mit dem Vaisala Indigo520

7.1 Vaisala Indigo520 Messwertgeber

Der Messwertgeber Indigo520 ist ein optionales Zubehör für PR53 Refraktometer und andere Vaisala Indigo kompatible Geräte. An denselben Messwertgeber Indigo520 können ein oder zwei Refraktometer angeschlossen werden. Standardmäßig identifiziert der Indigo520 die Geräte als "Sonde 1" und "Sonde 2" sowie anhand der Seriennummer, wenn sie an den entsprechenden Anschluss im Verdrahtungskopf angeschlossen sind.

Der Messwertgeber Vaisala Indigo520 bietet folgende Möglichkeiten:

- Anzeigen des Refraktometerstatus
- Justieren der Konzentrationsmessung
- Durchführen der BI-Kalibrierung
- Konfigurieren des Analogausgangskanals
- Konfigurieren der Ausgangssignaldämpfung
- Konfigurieren der Refraktometer-Prismareinigungen

Vollständiges Benutzerhandbuch: Indigo500 User Guide (M212287EN).

7.2 Herstellen der Verbindung zum Indigo520

Stellen Sie vor dem Anschließen der Leiter oder Kabel sicher, dass der Messwertgeber ausgeschaltet ist.

Abbildung 13 Verbinden des Refraktometers mit dem Indigo520

- Lösen Sie die 2 Sechskantschrauben im Gehäusedeckel des Messwertgebers mit einem Innensechskantschlüssel (4 mm).
 - 2. Öffnen Sie den Gehäusedeckel des Messwertgebers.
 - 3. Schließen Sie die Leiter im Refraktometer an.

Weitere Informationen zum Anschließen des Refraktometers finden Sie in der modellspezifischen Installationsanleitung.

 Schließen Sie die Leiter im Inneren des Messwertgebers an (siehe Indigo500 User Guide (M212287EN).

7.3 Allgemeine Einstellungen

In den allgemeinen Einstellungen können Sie dem Refraktometer einen benutzerdefinierten Namen geben, beispielsweise eine Markierungsnummer, eine Position oder eine andere Bezeichnung zur Identifizierung. So können die Refraktometer besser voneinander unterschieden werden. Der benutzerdefinierte Name wird im Speicher des Refraktometers gespeichert und auf dem Indigo520, in der Software Insight und in anderen Schnittstellen als Geräteidentifizierung sowie in Geräteprotokollen angezeigt.

Sie können die allgemeinen Einstellungen des Refraktometers unter **Menu > <Ihr Refraktometer> > General** bearbeiten.

Unter General können Sie dem Refraktometer einen benutzerdefinierten Namen geben.

7.4 Menü "Diagnose"

Im Menü **Diagnostics** können Sie verschiedene Diagnose- und Messwerte anzeigen. Ab Version 1.16.2 der Software Indigo520 finden Sie das Menü **Diagnostics** unter **Menu > <Ihr Refraktometer> > Diagnostics**. In älteren Softwareversionen ist die Ansicht **Diagnostics** die vierte Ansicht **Home**.

Unter **Diagnostics** können Sie die folgenden Aktionen ausführen:

- Field sample nehmen.
 - Eine Feldprobe ist eine Funktion zum Aufzeichnen eines Punktes in den Messdaten. Um unnötiges Rauschen zu vermeiden, umfasst die Feldprobe im Durchschnitt 10 Sekunden der Messdaten.
 - Die Feldprobe ist eine Probe des berechneten Durchschnitts von 10 aufeinanderfolgenden Messungen.
 - Bei gleichzeitiger Auslösung mit der Erfassung einer Laborprobe kann der Feldprobenpunkt zur Kalibrierung gegenüber einer Laborreferenz verwendet werden.
 - Die Proben werden in einem Fenster angezeigt, sodass sie für die spätere Verwendung aufgezeichnet werden können.

Das Aufzeichnen der Proben muss manuell erfolgen, indem eine Notiz gemacht oder ein Foto erstellt wird.

• Prism wash starten.

- Aktivieren Sie eine konfigurierte Prismareinigung.
- Zeigen Sie alle konfigurierten Prismareinigungen und -entleerungen an.
- Zeigen Sie die Diagnose der vorherigen Prismareinigung an.

7.4.1 Anzeigen des Refraktometerstatus

Der Refraktometerstatus wird unter **Diagnostics** angezeigt. Der Status **Normal operation** wird angezeigt, wenn keine aktiven Fehler vorliegen.

7.5 Konzentrationsmessung

Eine Justierung des Rohkonzentrationswerts kann erforderlich sein, um Prozessbedingungen zu kompensieren oder die Justierung an die Laborergebnisse anzupassen.

Es gibt vier Voreinstellungen mit jeweils eigenen C- und F-Parametern, die in separaten Speicherplätzen gespeichert werden können.

7.5.1 Berechnen der Feldjustierung

Zur Berechnung von Feldverstärkung und Feldoffset müssen Sie Proben aus der Prozessflüssigkeit nehmen.

- 1. Nehmen Sie Proben aus der Prozessflüssigkeit und eine Feldprobe.
 - 2. Wiederholen Sie dies bei Bedarf mehrmals.

Um Offset und Verstärkung berechnen zu können, benötigen Sie mindestens zwei Punkte. Nehmen Sie Proben unter Prozessbedingungen mit einer großen Spanne im Messbereich.

- 3. Berechnen Sie Feldverstärkung und Feldoffset aus den Datenpunkten.
- 4. Navigieren Sie zu Menu > Concentration curves.
- 5. Wählen Sie die Konzentrationskurve und Modify adjustment.
- 6. Ändern Sie die Werte zu Offset und Gain.

Wenn bereits eine Feldkalibrierung vorliegt, setzen Sie die Werte wie folgt zurück, bevor Sie die Werte für Offset und Verstärkung für eine neue Feldkalibrierung berechnen:

- Offset: 0
- Gain: 1

Weitere Informationen

Feldprobe (Seite 41)

7.5.2 Ändern der Konzentrationskurven

Das PR53 Refraktometer kann in seinem Speicher bis zu vier verschiedene Konzentrationskurven speichern. Standardmäßig wird das Gerät mit einer werkseitig vorkonfigurierten Konzentrationskurve geliefert. Mithilfe der Software Insight und einem USB-Adapter können zusätzliche Konzentrationskurven hinzugefügt werden. Im Rahmen einer maßgeschneiderten Bestellung sind mehrere werkseitig vorkonfigurierte Konzentrationskurven erhältlich.

Ändern Sie die Parameter der Konzentrationskurve nur, wenn das Prozessmedium gewechselt wird. Wenn Sie sich nicht sicher sind, wie vorzugehen ist, kontaktieren Sie helpdesk@vaisala.com.

Eine Konzentrationskurve ist für das gegebene Prozessmedium (z. B. Saccharose oder Natriumhydroxid) spezifisch. Der Parametersatz wird von Vaisala bereitgestellt. Ändern Sie die Parameter der Konzentrationskurve nur, wenn das Prozessmedium gewechselt wird.

1. Sie können die Konzentrationskurve unter Menu > Concentration curves wählen.

 Sie können die C-Parameter unter Menu > Concentration curves > View parameters > Modify parameters ändern.

Der Wechsel von einer Konzentrationskurve zu einer anderen ändert die Methode, mit der die Konzentration überwachter Flüssigkeiten berechnet wird. Das Refraktometer wird neu gestartet, um die Änderung zu aktivieren.

Wenn Warnungen zu Konzentrationslimits festgelegt wurden, können diese durch die Änderung ausgelöst werden.

Weitere Informationen

- Feldjustierungsparameter (Seite 30)
- Feldprobe (Seite 41)
- Parameter der Konzentrationskurve (Seite 30)

7.5.3 Feldprobe

Eine Feldprobe ist ein dem Prozess entnommener Messdatensatz, der den berechneten Durchschnitt von zehn aufeinanderfolgenden Messungen repräsentiert. Eine Feldprobe wird normalerweise genommen, wenn ein Snapshot der Prozessbedingungen benötigt wird.

Um eine Feldprobe zu nehmen, müssen Sie zur Ansicht "Diagnose" navigieren und **Field sample** wählen.

Das Ergebnis der Feldprobe wird mit Datum, Uhrzeit und Messergebnissen auf dem Bildschirm angezeigt. Die Ergebnisse können bei Bedarf zum Berechnen von Korrekturen gegenüber einer Labor- oder einer anderen Referenz verwendet werden: Wenn beispielsweise die Rohkonzentration (der Messwert ohne Feldkorrektur) einen Wert von 10,0 anzeigt und die Laborreferenz einen Wert von 9,0, beliefe sich der erforderliche Feldoffset auf -1,0, damit der Refraktometerwert mit dem Laborwert übereinstimmt.

7.6 BI-Kalibrierung

Um die BI-Kalibrierung durchzuführen, benötigen Sie Folgendes:

- Indigo520 Messwertgeber oder Software Vaisala Insight
- Probenhalter
- Reinigungslösung
- Tücher
- BI-Referenzflüssigkeiten, siehe unten
- Schutzkleidung
- Umgebung mit guter Belüftung

BI-Referenzflüssigkeiten

Die BI-Kalibrierung wird mit einem Satz von BI-Referenzflüssigkeiten durchgeführt, die den gesamten Messbereich des Prismas abdecken. Die Auswahl der BI-Referenzflüssigkeiten variiert abhängig vom verwendeten Prismentyp, da unterschiedliche Prismentypen einen bestimmten BI-Messbereich abdecken.

- A = BI 1320-1530 nD Saphirprisma
- B = BI 1360-1570 nD Saphirprisma

Der Prismentyp lässt sich anhand des Konfigurationscodes an der Seite des Refraktometers identifizieren.

Beachten Sie bei den Refraktometermodellen PR53AC, PR53AP, PR53GC, PR53GP und PR53SD die 7. Stelle des Konfigurationscodes.

Bei den Refraktometermodellen PR53M und PR53W beachten Sie die 6. Stelle des Konfigurationscodes.

ACHTUNG! Für jede Flüssigkeit gelten spezielle Sicherheitshinweise. Lesen Sie die Anleitung sorgfältig, bevor Sie mit der BI-Kalibrierung beginnen.

7.6.1 Vorbereiten der BI-Kalibrierung

Bevor Sie mit der BI-Kalibrierung beginnen, müssen Sie die Vorbereitungen abschließen.

- 1. Nehmen Sie das Refraktometer aus dem Prozess und legen Sie es so auf einen Tisch, dass das Prisma nach oben weist.
 - 2. Reinigen Sie das Prisma und den Probenhalter mit einer Ethanol-Reinigungslösung. Stellen Sie per sorgfältiger Sichtprüfung fest, ob das Prisma sauber ist.

- 3. Montieren Sie den Probenhalter auf dem Prisma.
- Bereiten Sie die erforderlichen BI-Referenzflüssigkeiten und deionisiertes Wasser (Probenflüssigkeiten) vor und platzieren Sie sie in der N\u00e4he des Refraktometers.
- 5. Lassen Sie das Refraktometer und die Probenflüssigkeit Raumtemperatur (+20 ... +30 °C) annehmen. Die Kalibrierung muss innerhalb dieses Temperaturbereichs erfolgen.

Das Abkühlen des Refraktometers kann einige Stunden dauern.

7.6.2 Durchführen einer BI-Kalibrierung mit dem Indigo520

- 1. Navigieren Sie zu **Menu** und wählen Sie das Refraktometer.
 - 2. Wählen Sie RI calibration > Calibrate.

Die BI-Kalibrierung kann entweder über den Touchscreen oder die Weboberfläche vorgenommen werden. Wenn eine Kalibrierung mit einer der Benutzeroberflächen vorgenommen wird, kann nicht gleichzeitig die andere Benutzeroberfläche verwendet werden.

3. Lesen Sie die Anweisungen auf dem Bildschirm und wählen Sie OK.

Ab diesem Punkt ist der Prozess halbautomatisch und Sie werden am Bildschirm durch den Prozess geführt.

- 4. Fügen Sie einen Kalibrierpunkt hinzu, indem Sie + drücken und den Referenz-BI wählen, für den kalibriert werden soll.
 - Das Refraktometer wartet im Rahmen der Kalibrierung, bis sich der Temperaturmesswert stabilisiert hat. Dies kann bis zu 4 Minuten dauern.
 - Nachdem der Soll-BI gewählt wurde, berechnet das Refraktometer den richtigen Referenz-BI bei der gemessenen Temperatur.

 Sobald sich die Temperatur stabilisiert hat, fordert die Benutzeroberfläche Sie auf, Probenflüssigkeit auf den Probenhalter zu geben und die Lichtabdeckung auf dem Probenhalter zu platzieren.

Die Kalibrierung verläuft ab diesem Punkt mit den folgenden Schritten automatisch:

- a. Probe erfassen
- b. Stabilisierung der Probe abwarten
- c. Kalibrieren ...
- 6. Sobald die Kalibrierung abgeschlossen ist, werden die Ergebnisse im Ergebnisbildschirm angezeigt.

Sie können die Ergebnisse eines kalibrierten Punkts später anzeigen, indem Sie die Kachel des gewünschten Punkts in der Kalibrieransicht wählen.

Sie können nun Folgendes wählen:

- Close: Schließt den Zusammenfassungsbildschirm und kehrt zur Kalibrieransicht zurück.
- Recalibrate point: Kalibriert den Punkt erneut.
- Delete point: Entfernt den kalibrierten Punkt.
- 7. Wiederholen Sie das Verfahren nach Bedarf für andere verfügbare Punkte.
- 8. Schließen Sie die Kalibrierung ab, indem Sie **Complete calibration** wählen. Dadurch werden alte Kalibrierdaten durch die neuen Daten ersetzt.

Außerdem sind folgende Aktionen möglich:

- **Optical image**: Sie können Refraktometerstatus, Diagnosewerte sowie optisches Abbild und Steigungsbild anzeigen.
- Cancel calibration: Kalibrierung beenden. Alte Kalibrierdaten werden nicht ersetzt.

Der Ergebnisbildschirm zeigt die Differenz zwischen Referenzwert und Messwert, einige Diagnosewerte und den Status eines einzelnen Kalibrierpunkts.

7.7 Konfigurieren des Analogausgangs mit dem Indigo520

Zum Konfigurieren des Analogausgangs siehe Indigo500 User Guide (M212287EN).

7.8 Konfigurieren der Messungsdämpfung

Sie können eine Messungsdämpfung zuweisen, um den Einfluss des Prozessrauschens zu reduzieren. Der Konzentrationswert (und damit das Ausgangssignal) des gewählten Refraktometers wird gedämpft.

Die Art der Messungsdämpfung können Sie unter **Menu > <Ihr Refraktometer> > Damping** wählen.

Sie können folgende Werte bearbeiten:

- Damping time
- Tolerance time
- Slew rate

Weitere Informationen

- Messungsdämpfung (Seite 34)
- Konfigurieren der Messungsdämpfung (Seite 60)

7.8.1 Exponentielle Dämpfung

Die exponentielle Dämpfung eignet sich für die meisten Prozesse und ist die Standardoption für langsame und kontinuierliche Verfahren. In der Werkseinstellung handelt es sich immer um die exponentielle Dämpfung.

Wählen Sie **Damping type**, um zwischen verschiedenen Dämpfungsalgorithmen umzuschalten.

Bei der exponentiellen Dämpfung ist die Dämpfungszeit die Zeit, bis die Konzentrationsmessung bei einer Änderung die Hälfte des Endwerts erreicht. Steigt beispielsweise die Konzentration von 50 % auf 60 %, meldet der Indigo520 bei einer Dämpfungszeit von 10 s nach 10 s eine Konzentration von 55 %. In den meisten Situationen funktioniert eine Dämpfungszeit von 5-15 s gut. Die Werkseinstellung liegt bei 5 s.

Wählen Sie Damping time, um die Dämpfungszeit einzustellen.

Die folgende Abbildung zeigt, wie sich die exponentielle Dämpfungszeit auf die Messung auswirkt.

7.8.2 Lineare Dämpfung

Wenn im Prozess schnelle Änderungen auftreten, ergibt sich mit der linearen (schnellen) Dämpfung eine kürzere Ausregelzeit.

Bei der linearen Dämpfung wird während der Dämpfungszeit der gleitende Mittelwert des Signals ausgegeben. Nach einer Änderung steigt das Signal linear an und erreicht nach Ablauf der Dämpfungszeit den Endwert. Die lineare Dämpfung bietet den besten Kompromiss zwischen Rauschunterdrückung und Reaktionszeit bei Änderungen.

Wählen Sie **Damping time**, um die Dämpfungszeit einzustellen.

Um vergleichbare Rauschunterdrückung zu erzielen, müssen Sie eine längere Dämpfungszeit als bei der exponentiellen Dämpfung angeben.

Die folgende Abbildung zeigt, wie sich die lineare Dämpfungszeit auf die Messung auswirkt.

Abbildung 15 Lineare Dämpfung

7.8.3 Limit der Anstiegsrate

Wenn das Prozesssignal kurze Fehlerspitzen (oben oder unten) aufweist, können deren Auswirkungen durch Begrenzung der Anstiegsrate minimiert werden.

Die Dämpfung der Anstiegsrate begrenzt die maximale Änderung des Ausgangssignals in 1 s. Das Dämpfen der Anstiegsrate wird für die Rauschunterdrückung von zufälligem Rauschen empfohlen, da sich das Rauschen nicht linear verhält. Wählen Sie **Slew rate**, um das Limit der Anstiegsrate festzulegen. Die typischen Werte sind von der Konzentrationseinheit abhängig, liegen aber häufig zwischen 0,05 % und 1 %, wenn die Konzentration in % gemessen wird.

Die folgende Abbildung zeigt ein Beispiel für unterschiedliche Limits der Anstiegsrate.

Abbildung 16 Dämpfung der Anstiegsrate

Um eine Überdämpfung zu vermeiden, darf das Signal nicht als unempfindlich festgelegt werden.

8. Verwenden des Refraktometers mit der Software Vaisala Insight

8.1 PC-Software Insight

Mit der PC-Software Vaisala Insight können Sie folgende Arbeiten ausführen:

- Konfigurieren des Analogausgangskanals
- Signaldämpfung konfigurieren
- Konzentrationskurven justieren
- BI-Messung kalibrieren
- BI-Justierungsparameter zurücksetzen

Funktionen des erweiterten Modus:

- BI-Messung justieren
- · Erstellen eines leeren Abbilds
- Werkseitige BI-Justierungsparameter überschreiben

Insight ist das einzige Tool zum Justieren von BI und Analogausgangskanal des Refraktometers.

8.2 Herstellen der Verbindung zur Software Insight

ACHTUNG! Beim gleichzeitigen Anschließen mehrerer Geräte müssen Sie beachten, dass der Computer über die USB-Anschlüsse möglicherweise nicht genügend Leistung bereitstellen kann. Verwenden Sie einen extern gespeisten USB-Hub, der > 2 W für jeden Anschluss liefern kann.

Insight kann mit 6 Geräten gekoppelt werden. Das Refraktometer kann über USB, aber auch über eine externe Stromquelle mit Spannung versorgt werden.

Insight dient der Konfiguration eines eigenständigen Refraktometers. Wenn Sie den Indigo520 an das Refraktometer angeschlossen haben, trennen Sie den Messwertgeber, bevor Sie eine Verbindung zu Insight herstellen.

Abbildung 17 Verbinden des Refraktometers mit Insight

- ▶ 1. Starten Sie die Software Insight auf dem PC.
 - 2. Verbinden Sie das USB-Kabel mit einem freien USB-Anschluss am PC.

8.3 Insight Hauptansicht

101	Insight 1.2.0.42				- 🗆 🗙
	VAISALA	Devices	Product documentation portal	MyVaisala Online st	ore Settings ~ 2
4-	Devices 🔻	PR53 PR04.002		Ø	Advanced mode
3-,	PRS3 PRO4.002	Sugar concentration 90.37 °Bx	Process Temperature 23.771 °C	Configure device Export settings Calibrate Communication > Internal functions > About device	Metric Non-metric Unit settings Factory code About Insight
	VAISALA Insidht	Raw Concentration 75.31 "Bx Quality Factor 47	Refractive Index 1.4		

1 Wählen Sie 👸, um auf das gerätespezifische Menü zuzugreifen.

- **Configure device**: Einstellungen zur Umgebungskompensation, Einstellungen für Analogausgang 1 und 2, Filterfaktor und allgemeine Einstellungen.
- Export settings: Exportiert eine Textdatei mit den Geräteeinstellungen.
- **Calibrate**: Optionen zum Kalibrieren und Justieren des BI- und T-Ausgangs, zum Testen und Justieren der Analogausgangspegel (Strom) und zum Wiederherstellen der Werksjustierungen.
- Communication: Enthält Optionen für den Neustart des Geräts.
- Factory default settings: Setzt das Gerät auf die Standardeinstellungen zurück, löscht alle Benutzerjustierungen und stellt die letzte Werkskalibrierung wieder her.
- About device: Allgemeine Geräteinformationen wie Seriennummer und Softwareversion.
- 2 Wählen Sie Settings, um zwischen den Benutzermodi Basic mode und Advanced mode umzuschalten, die Einheiten von Parametern zu ändern (metrisch/nicht metrisch), einen Werkscode für den Zugriff auf beschränkte Funktionen einzugeben oder Informationen über die Software Insight anzuzeigen.
- 3 Monitoring stellt Optionen zum Überwachen und Aufzeichnen gewählter Parameter sowie zum Exportieren der Überwachungsdaten als CSV-Datei (Kommas als Trennzeichen) bereit.
- 4 Geräteinformationsmenü mit den folgenden Registerkarten:
 - Measurements: Messgrafikansicht mit Parameter-Dropdownliste.
 - Calibration information: Schreibgeschützte Daten über die zuletzt gespeicherte Kalibrierung.
 - **Diagnostics**: Fehlerbeseitigung und administrative Angaben zum Gerätestatus.

8.3.1 Benutzermodi "Basis" und "Erweitert"

Sie können im Menü **Settings** zwischen den Benutzermodi **Basic mode** und **Advanced mode** wechseln.

Abhängig vom angeschlossenen Gerät kann das Wechseln zu **Advanced mode** möglicherweise den Zugriff auf zusätzliche Konfigurationsoptionen ermöglichen. Verwenden Sie diese Optionen nur wie in der Produktdokumentation beschrieben oder gemäß den Anweisungen vom Vaisala Support.

8.4 Konzentrationsmessung

Eine Justierung des Rohkonzentrationswerts kann erforderlich sein, um Prozessbedingungen zu kompensieren oder die Justierung an die Laborergebnisse anzupassen.

Es gibt vier Voreinstellungen mit jeweils eigenen C- und F-Parametern, die in separaten Speicherplätzen gespeichert werden können.

8.4.1 Berechnen der Feldjustierung

Zur Berechnung von Feldverstärkung und Feldoffset müssen Sie Proben aus der Prozessflüssigkeit nehmen.

- > 1. Nehmen Sie Proben aus der Prozessflüssigkeit und eine Feldprobe.
 - 2. Wiederholen Sie dies ausreichend oft.

Um Offset und Verstärkung berechnen zu können, benötigen Sie mindestens zwei Punkte. Nehmen Sie Proben unter Prozessbedingungen mit einer großen Spanne im Messbereich.

- 3. Berechnen Sie Feldverstärkung und Feldoffset aus den Datenpunkten.
- 4. Navigieren Sie zu 👩 > Configure device.
- 5. Wählen Sie die zu bearbeitende Konzentrationskurve.
- 6. Blättern Sie zum Ende des Bildschirms, um Field gain und Field offset zu ändern.

Wenn bereits eine Feldkalibrierung vorliegt, setzen Sie die Werte wie folgt zurück, bevor Sie die Werte für Offset und Verstärkung für eine neue Feldkalibrierung berechnen:

- Field offset: 0
- Field gain: 1

Weitere Informationen

Feldprobe (Seite 53)

8.4.2 Ändern der Konzentrationskurven

Das PR53 Refraktometer kann in seinem Speicher bis zu vier verschiedene Konzentrationskurven speichern. Standardmäßig wird das Gerät mit einer werkseitig vorkonfigurierten Konzentrationskurve geliefert. Mithilfe der Software Insight und einem USB-Adapter können zusätzliche Konzentrationskurven hinzugefügt werden. Im Rahmen einer maßgeschneiderten Bestellung sind mehrere werkseitig vorkonfigurierte Konzentrationskurven erhältlich.

Ändern Sie die Parameter der Konzentrationskurve nur, wenn das Prozessmedium gewechselt wird. Wenn Sie sich nicht sicher sind, wie vorzugehen ist, kontaktieren Sie helpdesk@vaisala.com.

Eine Konzentrationskurve ist für das gegebene Prozessmedium (z. B. Saccharose oder Natriumhydroxid) spezifisch. Der Parametersatz wird von Vaisala bereitgestellt. Ändern Sie die Parameter der Konzentrationskurve nur, wenn das Prozessmedium gewechselt wird.

- Sie können die Konzentrationskurve unter > Configure device > Active concentration curve > Select curve wählen.
 - Sie können die C-Parameter unter O > Configure device > Concentration curve 1/2/3/4 ändern.

Der Wechsel von einer Konzentrationskurve zu einer anderen ändert die Methode, mit der die Konzentration überwachter Flüssigkeiten berechnet wird. Das Refraktometer wird neu gestartet, um die Änderung zu aktivieren.

Wenn Warnungen zu Konzentrationslimits festgelegt wurden, können diese durch die Änderung ausgelöst werden.

8.4.3 Hochladen der Konzentrationskurven

Laden Sie Konzentrationskurven hoch, wenn Sie ursprüngliche Konzentrationskurven wiederherstellen, neue, zuvor nicht konfigurierte Konzentrationskurven hinzufügen oder aktualisierte Konzentrationskurven verwenden möchten.

- Melden Sie sich bei MyVaisala.com an und navigieren Sie zu LM Calibration tools > Concentration models POLARIS PR53. Wenn Sie keinen Zugriff auf die Tools haben, wenden Sie sich für die Kurvendatenzeichenfolgen an Ihren Händler vor Ort.
 - 2. Nutzen Sie die Suchfunktion um die richtige Konzentrationskurve zu finden.
 - 3. Wählen Sie in der Liste die Konzentrationskurve, um ihre Details anzuzeigen.
 - 4. Wählen Sie Copy to clipboard, um die Kurvendatenzeichenfolge zu kopieren.

Die Kurvendatenzeichenfolge wird in die Zwischenablage kopiert.

5. Navigieren Sie in Insight zu 🙋 > Configure device > Concentration curve upload.

- 6. Wählen Sie im Dropdown-Menü **Target curve** eine Zielkonzentrationskurve. Sie können entweder eine der vorhandenen Konzentrationskurven überschreiben oder **Add a new curve** wählen. Sie können maximal vier Konzentrationskurven hinzufügen.
- 7. Fügen Sie die Kurvendatenzeichenfolge in das Feld **Curve data string** ein.
- 8. Akzeptieren Sie die Änderung, indem Sie Save wählen.

Das Speichern der Änderungen dauert 10–15 Sekunden. Das Refraktometer wird möglicherweise neu gestartet.

Wenn Sie eine aktive Konzentrationskurve ersetzen, wird automatisch die neue Kurve übernommen. Informationen zum Aktivieren von Konzentrationskurven finden Sie unter Ändern der Konzentrationskurven (Seite 52).

8.4.4 Feldprobe

Eine Feldprobe ist ein dem Prozess entnommener Messdatensatz, der den berechneten Durchschnitt von zehn aufeinanderfolgenden Messungen repräsentiert. Eine Feldprobe wird normalerweise genommen, wenn ein Snapshot der Prozessbedingungen benötigt wird.

Um eine Feldprobe zu nehmen, wählen Sie das Refraktometer > **Diagnostics > Take field** sample > Refresh.

Das Ergebnis der Feldprobe wird mit Datum, Uhrzeit und Messergebnissen auf dem Bildschirm angezeigt. Die Ergebnisse können bei Bedarf zum Berechnen von Korrekturen gegenüber einer Labor- oder einer anderen Referenz verwendet werden: Wenn beispielsweise die Rohkonzentration (der Messwert ohne Feldkorrektur) einen Wert von 10,0 anzeigt und die Laborreferenz einen Wert von 9,0, beliefe sich der erforderliche Feldoffset auf -1,0, damit der Refraktometerwert mit dem Laborwert übereinstimmt.

8.5 BI-Kalibrierung

Um die BI-Kalibrierung durchzuführen, benötigen Sie Folgendes:

- Indigo520 Messwertgeber oder Software Vaisala Insight
- Probenhalter
- Reinigungslösung
- Tücher
- BI-Referenzflüssigkeiten, siehe unten
- Schutzkleidung
- Umgebung mit guter Belüftung

BI-Referenzflüssigkeiten

Die BI-Kalibrierung wird mit einem Satz von BI-Referenzflüssigkeiten durchgeführt, die den gesamten Messbereich des Prismas abdecken. Die Auswahl der BI-Referenzflüssigkeiten variiert abhängig vom verwendeten Prismentyp, da unterschiedliche Prismentypen einen bestimmten BI-Messbereich abdecken.

- A = BI 1320–1530 nD Saphirprisma
- B = BI 1360–1570 nD Saphirprisma

Der Prismentyp lässt sich anhand des Konfigurationscodes an der Seite des Refraktometers identifizieren.

Beachten Sie bei den Refraktometermodellen PR53AC, PR53AP, PR53GC, PR53GP und PR53SD die 7. Stelle des Konfigurationscodes.

Bei den Refraktometermodellen PR53M und PR53W beachten Sie die 6. Stelle des Konfigurationscodes.

ACHTUNG! Für jede Flüssigkeit gelten spezielle Sicherheitshinweise. Lesen Sie die Anleitung sorgfältig, bevor Sie mit der BI-Kalibrierung beginnen.

8.5.1 Vorbereiten der BI-Kalibrierung

Bevor Sie mit der BI-Kalibrierung beginnen, müssen Sie die Vorbereitungen abschließen.

- Nehmen Sie das Refraktometer aus dem Prozess und legen Sie es so auf einen Tisch, dass das Prisma nach oben weist.
 - 2. Reinigen Sie das Prisma und den Probenhalter mit einer Ethanol-Reinigungslösung. Stellen Sie per sorgfältiger Sichtprüfung fest, ob das Prisma sauber ist.
 - 3. Montieren Sie den Probenhalter auf dem Prisma.
 - 4. Bereiten Sie die erforderlichen BI-Referenzflüssigkeiten und deionisiertes Wasser (Probenflüssigkeiten) vor und platzieren Sie sie in der Nähe des Refraktometers.
 - 5. Lassen Sie das Refraktometer und die Probenflüssigkeit Raumtemperatur (+20 ... +30 °C) annehmen. Die Kalibrierung muss innerhalb dieses Temperaturbereichs erfolgen.

Das Abkühlen des Refraktometers kann einige Stunden dauern.

8.5.2 Durchführen einer BI-Kalibrierung mit Insight

- 1. Wählen Sie das Refraktometer.
 - 2. Wählen Sie 🚫 > Calibrate.

3. Wenn Sie in den Kalibriermodus wechseln möchten, wählen Sie Yes.

Im Kalibriermodus wird die Konzentrationsberechnung angehalten und Analogausgang 1 kehrt zum Fehlerausgangspegel zurück.

4. Wählen Sie das Menü RI calibration.

5. Tragen Sie Probenflüssigkeit auf den Probenhalter auf und platzieren Sie die Lichtabdeckung auf dem Probenhalter.

Nehmen Sie das Refraktometer oder den Behälter mit der Probenflüssigkeit während der Kalibrierung nicht in die Hand und platzieren Sie Refraktometer oder Behälter nicht in der Nähe externer Wärmequellen. Änderungen der Temperatur von Refraktometer oder Probenflüssigkeit können die Qualität des Messpunkts beeinträchtigen oder zum Fehlschlagen der Messung führen.

 Drücken Sie für die verfügbaren Punkte – beginnend mit "Messung Punkt 1" – Measure, point 1.

Die Kalibrierung eines Punkts kann einige Minuten in Anspruch nehmen. Der Kalibrierungsfortschritt wird in der oberen Hälfte des Bildschirms angezeigt. Vor der Kalibrierung wird die Stabilisierung des Refraktometermesswerts abgewartet. Erst dann wird mit der Kalibrierung fortgefahren.

7. Wählen Sie beginnend mit **Nominal RI, point 1** die verwendete Referenzprobenflüssigkeit für die vorhandenen Punkte.

Nachdem der Soll-BI gewählt wurde, berechnet das Refraktometer den richtigen Referenz-BI bei der gemessenen Temperatur. Es wird nicht empfohlen, den BI-Referenzwert zu ändern.

- 8. Die Kalibrierergebnisse werden unten im Ergebnisblock angezeigt.
- 9. Wiederholen Sie das Verfahren nach Bedarf für andere verfügbare Punkte.

Der Ergebnisblock zeigt die Differenz zwischen Referenzwert und Messwert, einige Diagnosewerte und den Status eines einzelnen Kalibrierpunkts.

Der Status der verfügbaren Punkte, beginnend bei **Status, point 1**, gibt an, ob die Kalibrierung innerhalb der angegebenen Genauigkeitslimits lag.

Wenn Sie einen oder mehrere Kalibrierpunkte neu kalibrieren müssen:

- Wählen Sie None f
 ür "Soll-BI".
 - 2. Drücken Sie Measure point für den ausgewählten Punkt.
 - 3. Wählen Sie für den ausgewählten Punkt erneut den gewünschten Soll-BI.

8.5.3 Abschließen der BI-Kalibrierung

1. Sobald alle erforderlichen Punkte kalibriert wurden, drücken Sie unter der Registerliste Store calibration. Durch Drücken dieser Taste wird die Kalibrierung abgeschlossen und die aktuellen Kalibrierergebnisse werden im Refraktometerspeicher abgelegt.

Sie können nur auf das letzte Kalibrierergebnis zugreifen. Ältere Ergebnisse werden nicht gespeichert.

8.6 BI-Justierung

Jedes Refraktometer verfügt über eine eigene BI-Justierungskurve, die im Vaisala Werk berechnet wurde. Dies sind die A-Parameter.

Die Bl-Justierung sollte nur von geschultem Personal im Rahmen der Wartung durchgeführt werden. Wenn Sie die Art der Berechnung des Brechungsindex ändern, wirkt sich dies darauf aus, wie die Konzentration gemessen wird. Wenn die Justierung fehlerhaft durchgeführt wird, sind die folgenden Refraktometermessungen der Konzentration möglicherweise falsch.

Um eine BI-Berechnungsjustierung vorzunehmen, müssen mindestens fünf Kalibrierpunkte mit unterschiedlichem Soll-BI kalibriert werden. Die Kalibrierung erfolgt über das Menü **RI calibration**. Vaisala empfiehlt, dass Sie die BI-Justierung auf Basis einer kürzlichen Kalibrierung durchzuführen.

- 1. Führen Sie die BI-Kalibrierung im Menü RI calibration durch. Alternativ können Sie die Kalibrierdaten einer zuvor gespeicherten Kalibrierung abrufen, indem Sie Retrieve stored calibration wählen.
 - 2. Verifizieren Sie anhand des abgerufenen Kalibrierdatums, ob die BI-Kalibrierdaten verfügbar und aktuell sind.
 - 3. Wählen Sie Start adjustment.

Das Refraktometer berechnet neue BI-Berechnungsparameter. Neue Parameter und die maximale Differenz werden in der oberen Hälfte des Bildschirms angezeigt. Die maximale Differenz ist der größte Brechungsindex-Differenzwert, der aus den verfügbaren Kalibrierpunkten berechnet wird, wenn neue BI-Berechnungsparameter verwendet werden.

4. Wenn Sie mit den neuen BI-Berechnungsparametern und der maximalen Differenz zufrieden sind, wählen Sie **Yes**.

Die neuen Berechnungsparameter werden sofort gültig. Das Refraktometer wird neu gestartet, nachdem die neuen Parameter zugewiesen wurden.

8.6.1 Überschreiben der Werksjustierung

Überschreiben Sie die Werksjustierung, nachdem die optischen Komponenten gewartet wurden.

Wählen Sie Overwrite factory adjustment.

Wenn dies nicht geschieht und die Werkseinstellungen des Refraktometers wiederhergestellt werden, kann es sein, dass das Refraktometer die Konzentration nicht exakt berechnet.

8.7 Temperaturjustierung

Der Referenzwert muss bekannt sein.

Die Temperaturjustierung wirkt sich nicht auf die Konzentrationsberechnungen aus.

Navigieren Sie zu () > Calibrate device.

- 2. Setzen Sie Ihr Gerät in die Referenzumgebung für den ersten Kalibrierpunkt ein.
- 3. Warten Sie immer, bis sich der Messwert stabilisiert hat. Die Grafik zeigt die Messwerte der letzten 60 Minuten.
- 4. Wenn sich die Messung stabilisiert hat, wählen Sie das Textfeld **Reference value, point 1** und geben Sie die Temperatur für Kalibrierpunkt 1 ein. Wählen Sie **ENTER** oder klicken Sie außerhalb des Feldes, sobald Sie fertig sind.
- 5. Verifizieren Sie, dass der Messwert für Punkt 1 automatisch eingefügt wird.
- 6. Überprüfen Sie die Differenz zwischen jedem Referenzwert und Messwert. Sehr große Unterschiede können auf ungenügende Stabilisierungszeit oder ein ungeeignetes Kalibriersetup zurückzuführen sein.

Wenn Sie das Gerät justieren möchten, wählen Sie **Activate adjustment** und verifizieren Sie das Ergebnis anhand der Meldung, die oben auf dem Bildschirm angezeigt wird. Um den Vorgang zu beenden, ohne die Justierung zu aktivieren, wählen Sie **Close**.

7. Aktualisieren Sie nach der Kalibrierung Ihres Geräts die Daten auf der Registerkarte **Calibration information**.

Weitere Informationen

BI-Justierung (Seite 33)

8.7.1 Justieren der Temperatur anhand zuvor gemessener Werte

Wenn das Gerät das Bearbeiten des Feldes für den Messwert zulässt und Sie über eine Liste zuvor erfasster Kalibrierwerte verfügen (z. B. aus der Laborkalibrierung eines Drittanbieters), können Sie das Gerät justieren, ohne Kalibrierbedingungen herstellen und auf die Stabilisierung warten zu müssen.

- Wählen Sie das Feld Reference value, point 1 und geben Sie die Temperatur f
 ür Kalibrierpunkt 1 ein. Dr
 ücken Sie ENTER oder klicken Sie au
 ßerhalb des Feldes, wenn Sie fertig sind.
 - 2. Ersetzen Sie den automatisch eingefügten Messwert für Punkt 1 durch den zuvor gemessenen Wert.
 - 3. Wiederholen Sie den Vorgang für alle gewünschten Kalibrierpunkte.
 - 4. Wählen Sie **Activate adjustment** und verifizieren Sie das Ergebnis anhand der Meldung, die oben auf dem Bildschirm angezeigt wird.

8.8 Leeres Abbild

Ein leeres Abbild ist ein Referenzbild, das aufgenommen wurde, als sich keine Probe auf dem Prisma befand. Es dient zur Normalisierung des optischen Abbilds zur Erkennung und Diagnose des Abbilds.

Ein leeres Abbild wird verwendet, wenn als Erkennungsalgorithmus der IDS-Algorithmus verwendet wird. Die Kantenerkennung dieses Algorithmus basiert auf der Analyse des normalisierten optischen Abbilds. Die durch die Probe und die Erosion des Prismas verursachten Änderungen lassen sich in einem normalisierten Abbild leichter erkennen. Siehe hierzu das Bild "keine Probe" unter Analysieren des optischen Abbilds (Seite 146). Wenn sich keine Probe auf dem Prisma befindet, ist dies das gewünschte optische Abbild.

Für ein leeres Abbild gibt es drei mögliche Status:

- OK: Das leere Abbild ist verwendbar.
- **Checksum error**: Es ist kein gültiges Abbild verfügbar. Erstellen Sie ein neues leeres Abbild oder stellen Sie das Werksabbild wieder her, indem Sie **Restore factory image** drücken.
- **Not applicable**: Wird nur angezeigt, wenn der VD-Algorithmus als Erkennungsalgorithmus verwendet wird.

Weitere Informationen

Erstellen eines leeren Abbilds (Seite 58)

8.8.1 Erstellen eines leeren Abbilds

Dies ist ein reines Wartungsverfahren.

Das Verfahren sollte nur durchgeführt werden, wenn beispielsweise das Prisma ausgetauscht wurde.

Erstellen eines leeren Abbilds:

1. Nehmen Sie das Refraktometer aus der Prozessleitung.

- 2. Reinigen Sie das Prisma mit einer Ethanol-Reinigungslösung.
- 3. Schützen Sie das Prisma vor Außenlicht.
- 4. Wählen Sie Create image.

Weitere Informationen

Leeres Abbild (Seite 58)

8.9 Konfigurieren des Analogausgangs

Das PR53 Prozessrefraktometer verfügt über einen integrierten 4-20 mA-Ausgang.

Zu den elektrischen Eigenschaften des Analogausgangs siehe Refraktometeranschlüsse (Seite 19).

Navigieren Sie zum Konfigurieren des Analogausgangs zu 🔅 > Configure device > Analog output 1.

Justieren des Analogausgangs:

- Scale low end legt den Wert f
 ür ein Signal von 4 mA fest. Der Standard-Nullwert ist 0,00. Die Einheit h
 ängt von der f
 ür den Sensor eingestellten Quelle und Anzeigeeinheit ab (kann beispielsweise 0 Bx oder 0 °C betragen).
- Mit **Scale high end** wird der Bereich angegeben, also der Wert, der bei einem Signal von 20 mA gilt.
- Mit Error output level wird ein Standardwert f
 ür den Analogausgang eingestellt, den das Instrument bei bestimmten Fehlfunktionen wiederherstellt. Die Werkseinstellung f
 ür den Standardausgangswert ist 3,4 mA. Eine Liste der relevanten Fehlfunktionen finden Sie unter Fehlerstatus (Seite 81).
 - NAMUR NE 43 nutzt den Signalbereich 3,8–20,5 mA, um Messdaten zu übermitteln. Mit PR53 Prozessrefraktometern können Sie Werte ≤ 3,6 mA als Diagnosefehler konfigurieren. Mit diesen Daten kann der Fehlerzustand eines Refraktometers einfacher erkannt werden. Sie können beispielsweise eindeutig zwischen einem leeren Rohr und einem Instrument mit Störung unterscheiden.
- Mit No sample error output und No sample error output level können Sie einen sekundären mA-Ausgangswert für ein leeres Rohr (Meldung No liquid detected) einstellen, um für eine Unterscheidung von anderen Meldungen zu sorgen, die eine Rücksetzung des Messwerts auf den mA-Standardwert veranlassen. Standardmäßig ist der sekundäre mA-Ausgang deaktiviert.

Weitere Informationen

- Refraktometeranschlüsse (Seite 19)
- Justieren des Ausgangspegels f
 ür Analogausgang 1 (Seite 60)
- Fehlerstatus (Seite 81)

8.9.1 Justieren des Ausgangspegels für Analogausgang 1

Im Testmodus können Sie den Stromausgangspegel des Analogausgangs mit einem Multimeter testen und bei Bedarf den Ausgangspegel (Zwei-Punkt-Justierung) justieren.

Schalten Sie **Test mode** nach dem Test immer aus, um den normalen Betriebsmodus der Analogausgänge wiederherzustellen. Der Analogausgang gibt keine Messdaten aus, wenn sich die Analogausgänge im Testmodus befinden.

So testen und justieren Sie den Stromausgangspegel des Analogausgangs:

- 1. Schließen Sie ein Multimeter an die Analogausgangsverdrahtung an (in Reihe verbinden, um den Stromausgang zu messen).
 - 2. Navigieren Sie zu 👩 > Calibrate > Yes.
 - 3. Aktivieren Sie Test mode (schalten Sie auf ON).

Durch Auswahl von **Disabled** wird der gewählte Ausgang ausgeschaltet.

- 4. Geben Sie einen niedrigen Ausgangswert in mA (z. B. **5**) in das Feld **Test output level** ein. Der Analogausgang gibt Strom mit diesem Pegel aus.
- 5. Prüfen Sie den Multimetermesswert und geben Sie den gemessenen Wert (z. B. **4,95**) in das Feld **Measured value, low point** ein.
- Geben Sie einen hohen mA-Wert (z. B. 19) in das Feld Test output level ein, überprüfen Sie den Multimetermesswert und geben Sie diesen in das Feld Measured value, high point ein, wenn er vom Testausgangswert abweicht.
- 7. Wählen Sie Activate adjustment, um die Korrektur des Ausgangspegels zu speichern.
- 8. Um zu verifizieren, dass der aktuelle Ausgangspegel jetzt richtig ist, geben Sie einen neuen Wert (z. B. **12**) in das Feld **Test output level** ein und überprüfen Sie, ob der Multimetermesswert dem von Ihnen eingegebenen Testausgangswert entspricht.
- 9. Zeichnen Sie die Verstärkungs- und Offsetwerte für die spätere Verwendung auf: Sie können die Verstärkung und den Offset direkt eingeben, um später die gleiche Justierung zu wiederholen.
- 10. Deaktivieren Sie **Test mode** (schalten Sie auf **OFF**) und wählen Sie **Close**, um den Kalibriermodus zu beenden.
- 11. Ersetzen Sie die ursprüngliche Verdrahtung des Analogausgangs.

8.9.2 Konfigurieren der Messungsdämpfung

Sie können eine Messungsdämpfung zuweisen, um den Einfluss des Prozessrauschens zu reduzieren. Der Konzentrationswert (und damit das Ausgangssignal) des gewählten Refraktometers wird gedämpft. Sie können die Art der Messungsdämpfung unter 🔯 > Configure device > Damping > Damping type wählen.

Sie können folgende Werte bearbeiten:

- Damping time
- Tolerance time
- Slew rate

Weitere Informationen

- Messungsdämpfung (Seite 34)
- Konfigurieren der Messungsdämpfung (Seite 44)

8.9.2.1 Exponentielle Dämpfung

Die standardmäßig verwendete exponentielle Dämpfung eignet sich für die meisten Prozesse und ist die Standardoption für langsame und kontinuierliche Verfahren. In der Werkseinstellung handelt es sich immer um die exponentielle Dämpfung.

Wählen Sie **Damping type**, um zwischen verschiedenen Dämpfungsalgorithmen umzuschalten.

Bei der exponentiellen Dämpfung ist die Dämpfungszeit die Zeit, bis die Konzentrationsmessung bei einer Änderung die Hälfte des Endwerts erreicht. Steigt beispielsweise die Konzentration von 50 % auf 60 %, meldet Insight bei einer Dämpfungszeit von 10 s nach 10 s eine Konzentration von 55 %. Eine Dämpfungszeit von 5–15 s ist für die meisten Situationen geeignet. Die Werkseinstellung beträgt 5 s. Sie können die Dämpfungszeit mit der Menüoption **Damping time** einstellen. Die folgende Abbildung zeigt, wie sich die exponentielle Dämpfungszeit auf die Messung auswirkt.

Abbildung 18 Exponentielle Dämpfung

8.9.2.2 Lineare Dämpfung

Wenn im Prozess schnelle Änderungen auftreten, ergibt sich mit der linearen (schnellen) Dämpfung eine kürzere Ausregelzeit.

Bei der linearen Dämpfung wird während der Dämpfungszeit der gleitende Mittelwert des Signals ausgegeben. Nach einer Änderung steigt das Signal linear an und erreicht nach Ablauf der Dämpfungszeit den Endwert. Die lineare Dämpfung bietet den besten Kompromiss zwischen Rauschunterdrückung und Reaktionszeit bei Änderungen.

Wählen Sie Damping time, um die Dämpfungszeit einzustellen.

Um vergleichbare Rauschunterdrückung zu erzielen, muss eine längere Dämpfungszeit als bei der exponentiellen Dämpfung angegeben werden.

Die folgende Abbildung zeigt, wie sich die lineare Dämpfungszeit auf die Messung auswirkt.

Abbildung 19 Lineare Dämpfung

8.9.2.3 Limit der Anstiegsrate

Wenn das Prozesssignal kurze Fehlerspitzen (oben oder unten) aufweist, können deren Auswirkungen durch Begrenzung der Anstiegsrate minimiert werden.

Die Dämpfung der Anstiegsrate begrenzt die maximale Änderung des Ausgangssignals in 1 s. Das Dämpfen der Anstiegsrate wird für die Rauschunterdrückung empfohlen, da sich das Rauschen nicht linear verhält.

Wählen Sie **Slew rate**, um das Limit der Anstiegsrate festzulegen. Die typischen Werte sind von der Konzentrationseinheit abhängig, liegen aber häufig zwischen 0,05 % und 1 %, wenn die Konzentration in % gemessen wird.

Die folgende Abbildung zeigt ein Beispiel für unterschiedliche Limits der Anstiegsrate.

Um eine Überdämpfung zu vermeiden, darf das Signal nicht als unempfindlich festgelegt werden.

8.10 Konfigurieren der Modbus-Kommunikationseinstellungen mit Insight

Sie können die folgenden Modbus-Kommunikationseinstellungen mit der PC-Software Insight konfigurieren:

- Geräteadresse
- Kommunikationsbitrate
- Parität, Datenbits und Stoppbits
- Ansprechverzögerung

So konfigurieren Sie die Modbus-Kommunikationseinstellungen mit Insight:

- Stellen Sie eine Verbindung zu Insight her und wählen Sie O > Configure device > Communication.
 - Geben Sie die Kommunikationswerte nach Bedarf ein: Zulässige Bereiche und weiterführende Informationen finden Sie in den Anleitungen in der Insight Benutzeroberfläche.

3. Wählen Sie zum Speichern der Einstellungen Save.

Weitere Informationen

- Modbus RTU (Seite 26)
- Modbus-Register (Seite 134)
- Systemverdrahtung (Seite 20)
- Starten des eigenständigen Refraktometers (Seite 36)

8.11 Wiederherstellen der Werkseinstellungen

Die Funktion **Restore default settings** stellt die zuletzt gespeicherten Einstellungen und Parameter des Refraktometers wieder her. Die Konzentrationskurven werden durch das Wiederherstellen der Werkseinstellungen nicht wiederhergestellt.

> 1. Wählen Sie Factory default settings > Restore default settings > Yes.

Weitere Informationen

Hochladen der Konzentrationskurven (Seite 52)

9. Präventive Wartung

9.1 Präventive Wartung

PR53 Prozessrefraktometer enthalten keine Verschleißteile oder regelmäßig auszutauschenden Teile. PR53 Prozessrefraktometer müssen – abhängig von den Prozessbedingungen – möglicherweise nie gewartet werden.

Es gibt einige Aspekte, die überwacht werden müssen:

Tabelle 6 Präventive Wartung

Teil	Aktion
Prisma	 Stellen Sie sicher, dass das Prisma sauber ist, indem Sie Folgendes überwachen: Diagnose des optischen Abbilds. Siehe Analysieren des optischen Abbilds (Seite 146). Änderungen des Qualitätsfaktorwerts. Eine Änderung des Werts weist normalerweise auf ein verschmutztes Prisma hin. Siehe Vaisala Polaris Process Refractometer PR53 Prism Wash System User Guide und Datenprotokollierung unter Indigo500 User Guide (M212287EN).
Prismadichtung	Ermitteln Sie per Sichtprüfung, ob die Prisma- dichtung intakt ist. Dies ist insbesondere bei den Teilen der hygienerelevanten Geräte wichtig, die mit dem Prozessmedium in Kontakt kommen.
Interner Feuchtepegel des Refraktometers	Die relative Feuchte gibt an, ob Flüssigkeit in das Innere des Refraktometers eingetragen wur- de oder die interne Trocknungsmittelkapsel aus- getauscht werden muss. Typischerweise sollte die relative Feuchte im Inneren < 50 % rF sein.
PR53AC und PR53AP Durchflusszelle	Die Waschdüsendichtung muss gegen eine neue ausgewechselt werden, wenn die Waschdüse ausgebaut wird, beispielsweise zu Wartungs- zwecken. Die alte Dichtung kann brechen und Teile können in die Prozessflüssigkeit fallen. Die neue Dichtung muss geschmiert werden. Ver- wenden Sie ein Schmiermittel, das für die Le- bensmittelindustrie geeignet ist.

9.1.1 PR53M Wartungssicherheit

WARNUNG! Öffnen Sie nicht die Innensechskantschrauben an der Refraktometerabdeckung. Die unter Druck stehende Prozessflüssigkeit würde austreten und könnte zum Tod oder zu schweren Verletzungen führen.

Abbildung 22 Innensechskantschrauben an den Gewindeschrauben der Endplatte der PR53M Durchflusszelle (integrierte Armaturen)

9.2 Reinigen von Refraktometer und Prisma

Reinigen des Prismas

In den meisten Einsatzbereichen bleibt das Prisma aufgrund seines Selbstreinigungseffekts sauber.

Treten Probleme mit geschichteten Ablagerungen auf, besteht die bevorzugte Lösung darin, die Strömungsgeschwindigkeit zu erhöhen, indem beispielsweise ein Rohrabschnitt mit kleinerem Durchmesser installiert wird. Wenn eine Erhöhung der Strömungsgeschwindigkeit das Problem nicht beseitigt, können Sie die Installation einer Waschdüse und eines Reinigungssystems in Betracht ziehen. Siehe PR53 Prism Wash System User Guide (M212808EN).

Wenn das Prisma mechanisch gereinigt werden muss:

- Reinigen Sie das Prisma mit einem weichen Tuch oder bei hartnäckigen Verschmutzungen mit einer Glasfaserbürste.
- Verwenden Sie Wasser oder bei Bedarf ein geeignetes Lösemittel.
- Trocknen Sie das Prisma vorsichtig mit einem fusselfreien Tuch ab, beispielsweise mit einem Mikrofasertuch.

1

Vermeiden Sie bei der Reinigung des Prismas die Verwendung von Sandpapier, Polierpaste, einer Drahtbürste oder Ähnlichem.

Achten Sie bei der BI-Kalibrierung besonders auf die Reinigung des Prismas.

Reinigen des Refraktometers

Reinigen Sie das Refraktometer mit einem geeigneten Lösemittel und einem feuchten Tuch.

9.3 Entfernen des PR53SD Refraktometers vom Retraktor

i

- Refraktometer
- 19-mm-Schraubenschlüssel

Befolgen Sie diese Anweisungen, um das PR53SD Refraktometer vom Retraktor zu entfernen. Wenden Sie sich bei Bedarf an den technischen Support von Vaisala.

Scannen Sie den QR-Code, um ein Video zum Installieren und Entfernen des Refraktometers anzusehen: https://youtu.be/UVMIfPiz3-4?si=10QtPKXKT741jnO_

- > 1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.
 - 2. Lösen Sie die Schrauben, um die hintere Abdeckplatte abzunehmen.

3. Trennen Sie die Kabel vom Verdrahtungskopf.

4. Lösen und entfernen Sie die Muttern mit einem 19-mm-Schraubenschlüssel.

WARNUNG! Öffnen Sie nicht die Hutmuttern. Die unter Druck stehende Prozessflüssigkeit würde austreten und könnte zum Tod oder zu schweren Verletzungen führen.

5. Drehen Sie das Handrad bis zum Anschlag.

Das Refraktometer ist noch nicht vollständig ausgefahren.

6. Schließen Sie das Absperrventil, indem Sie den Ventilgriff um 90° drehen.

7. Drehen Sie das Handrad bis zum Anschlag.

8. Entfernen Sie das Refraktometer vom Retraktor.

Kippen Sie das Refraktometer, um es aus dem Retraktor entfernen zu können.

10. Fehlerbeseitigung

10.1 Fehlerbeseitigungsmeldungen

Tabelle 7 Hardware-Fehlerbeseitigung

Problem	Relevanz	Ursache	Korrekturmaßnahmen
Meldung Internal humidity too high. (Interne Feuchte zu hoch)	Error	Die an der Prozessorkarte des Refraktometers ge- messene relative Feuchte überschreitet 60 % rF. Der Grund kann Eindringen von Feuchtigkeit durch die Prismadichtung oder eine offene Abdeckung sein.	Verifizieren Sie, dass die Prismadichtung intakt und die Abdeckung geschlos- sen ist. Tauschen Sie die Prisma- dichtung bei Bedarf aus.
Meldung Internal temperature too high. (Innentemperatur zu hoch)	Error	Die Temperatur auf der Sensorprozessorkarte überschreitet +65 °C. Ab- lesen dieser Temperatur: • Navigieren Sie in Indi- go520 zu Menu > <ihr Refraktometer> > Diagnostics. • Navigieren Sie in Insight zu <ihr refraktometer=""> > Diagnostics.</ihr></ihr 	Achten Sie darauf, das Ge- rät im richtigen Tempera- turbereich zu verwenden. Siehe die modellspezifi- schen Spezifikationen zu Umgebungs- und Prozess- temperatur.
Indigo520: Keine Geräte angeschlossen/Getrennt Insight: Der Startbild- schirm zeigt keine kompa- tiblen Geräte	N. a.	Die Kabel sind nicht richtig angeschlossen. Das Refraktometer ist mit dem Indigo520 und mit In- sight verbunden.	Verifizieren Sie, dass die Kabel auf beiden Seiten richtig angeschlossen sind. Wenn das Refraktometer mit dem Indigo520 und mit Insight verbunden ist, hat der Indigo520 die hö- here Priorität und das Re- fraktometer ist für Insight nicht sichtbar. Wenn Sie die Abdeckung des Refraktometers öffnen können, verifizieren Sie, dass die grüne LED leuch- tet. In diesem Fall wird das Refraktometer mit Span- nung versorat

Problem	Relevanz	Ursache	Korrekturmaßnahmen	
Relais arbeitet nicht	N. a.	Relais befindet sich möglich rifizieren Sie mit dem Indigo and outputs > Relays > Test inaktiv ist.	erweise im Testmodus. Ve- 520 unter Menu > Inputs mode , dass der Testmodus	
		Zum Testen der Reinigungsf Wash System User Guide (M	unktion siehe PR53 Prism 1212808EN)	
Analogausgangssignal ar- beitet nicht wie erwartet	N. a.	Prüfen Sie die Verdrahtung, stallationsanleitung.	siehe modellspezifische In-	
		Falls das Analogausgangssignal nicht der Konzentra onsanzeige entspricht, müssen Sie die Konfiguration des Ausgangssignals prüfen (siehe Diagnose).		
		 Konfigurieren Sie den Analogausgang, um o zu beheben. Indigo520: Siehe Indigo500 User Guide (M212287EN). Insight: Siehe Konfigurieren des Analogau (Seite 59). 		
		Ein schwaches Analogausga hohen Widerstand in der ex sacht werden, siehe Refrakte te 19).	ingssignal kann auch durch ternen Stromschleife verur- ometeranschlüsse (Sei-	
		 Ein verrauschtes Signal kann gedämpft werden, siehe Indigo520: Konfigurieren der Messungsdämpfung (Seite 44) Insight: Konfigurieren der Messungsdämpfung (Seite 60) 		

Tabelle 8 Messfehlerbeseitigung

Problem	Relevanz	Ursache	Korrekturmaßnahmen			
Meldung No optical image. (Kein optisches	Critical	Um das optische Abbild anzuzeigen, müssen Sie das Menü "Diagnose" in Indigo520 oder Insight öffnen.				
Abbild)		Es gibt mehrere mögliche U	rsachen:			
		 Auf dem Prisma haben sich starke Ablagerung gebildet. Führen Sie eine Prismareinigung dur (sofern verfügbar), siehe PR53 Prism Wash Sy User Guide (M212808EN). Wenn die Prismarei gung nicht verfügbar ist, nehmen Sie das Refr meter aus der Prozessleitung und reinigen Sie Prisma manuell. Im Refraktometerkopf ist Feuchtigkeit konden Die Temperatur im Refraktometerkopf ist zu h Die Lichtquelle ist fehlerhaft. Wenn das Refrak ter aus dem Prozess entfernt wird, ist ein gelb endes Licht durch das Prisma erkennbar. 				
		Das Licht ist nur aus schrägen Win- keln erkennbar. Prüfen Sie auch den LED-Wert in der Ansicht Diagnostics . Bei einem Wert deut- lich unter 100 liegt wahrscheinlich kein LED-Fehler vor.				
		 Das optische Abbild wei wahrscheinliche Ursache schen Element. Die CCD-Karte im Refrał 	st negative Spitzen auf. Die e ist Staub auf dem opti- ktometer ist fehlerhaft.			
Meldung Blank image corrupted. (Leeres Bild schadhaft)	Critical	Das leere Abbild fehlt oder ist schadhaft.	Erstellen Sie ein neues lee- res Abbild. Siehe Leeres Abbild (Seite 58). Kontak- tieren Sie helpdesk@vaisa- la.com.			
Meldung External light level too high. (Außenlichtstärke zu hoch)	Error	Die Messung ist nicht möglich, weil zu viel Au- ßenlicht auf die Kamera fällt.	Identifizieren Sie die Licht- quelle (z. B. Sonne, die in einen offenen Tank oder ein durchsichtiges Rohr scheint) und verhindern Sie, das Licht auf das Pris- ma an der Sensorspitze fällt.			

Problem	Relevanz	Ursache	Korrekturmaßnahmen
Meldung Prism coating detected. (Prismabelag erkannt)	Error	Auf der optischen Oberflä- che des Prismas hat sich das Prozessmedium (oder Verunreinigungen im Pro- zessmedium) abgelagert.	Führen Sie eine Prismarei- nigung durch (sofern ver- fügbar), siehe PR53 Prism Wash System User Guide (M212808EN). Wenn die Prismareinigung nicht ver- fügbar ist, nehmen Sie das Refraktometer aus der Prozessleitung und reini- gen Sie das Prisma manu- ell. Wenn das Problem wie- derholt auftritt, sollten Sie eine Verbesserung der Strömungsbedingungen in Erwägung ziehen, siehe die modellspezifische In- stallationsanleitung. Wenn die Prismareinigung ver- fügbar ist, justieren Sie die Reinigungsparameter, sie- he PR53 Prism Wash Sys- tem User Guide (M212808EN).
Meldung Temperature measurement error. (Temperaturmessfehler)	Error	Ein Temperaturelement ist fehlerhaft.	Wenden Sie sich an Ihren Händler oder an help- desk@vaisala.com. Mögli- cherweise muss das Tem- peraturelement ausge- tauscht werden. Beachten Sie, dass eine Differenz zu einigen ande- ren Prozesstemperatur- messungen noch keinen Fehler begründet. Das PR53 misst die tatsächli- che Temperatur der Pris- maoberfläche.
Meldung Invalid calculation parameters. (Ungültige Berechnungsparameter)	Error	Die A-Parameter sind falsch.	Nehmen Sie eine BI-Jus- tierung vor oder kontak- tieren Sie helpdesk@vaisa- la.com.

Problem	Relevanz	Ursache	Korrekturmaßnahmen
Meldung C measurement out of concentration curve range. (C-Messung außerhalb des Konzentrationskurvenber eichs)	Warning	Die Konzentrationsmes- sung liegt außerhalb des in der Konzentrationskurve definierten Bereichs. Wenn die Konzentration der Messung außerhalb des gültigen Bereichs für die verwendete Kurve liegt, kann das Messergebnis un- zuverlässig sein.	 Verifizieren Sie, dass die Messung richtig ist. Ist das der Fall, sollten Sie prüfen, ob die Kon- zentrationskurve für den Prozess geeignet ist. Kontaktieren Sie den Außendienstmitar- beiter oder help- desk@vaisala.com. Wenn Sie wissen, dass die Messung nicht dem angenommenen Kon- zentrationswert ent- spricht, liegt der Mess- bereich möglicherwei- se außerhalb des durch die Konzentrationskur- ve definierten Gültig- keitsbereichs. Kontak- tieren Sie help- desk@vaisala.com.
Meldung T measurement out of concentration curve range. (T-Messung außerhalb des Konzentrationskurvenber eichs)	Warning	Die Temperaturmessung liegt außerhalb des in der Konzentrationskurve defi- nierten Bereichs. Wenn die gemessene Temperatur außerhalb des gültigen Bereichs für die verwende- te Kurve liegt, kann das Messergebnis unzuverläs- sig sein.	 Verifizieren Sie, dass die Messung richtig ist. Ist das der Fall, sollten Sie prüfen, ob die Kon- zentrationskurve für den Prozess geeignet ist. Kontaktieren Sie den Außendienstmitar- beiter oder help- desk@vaisala.com.
Meldung External light level high. (Außenlichtstärke hoch)	Warning	Von außen fällt etwas Licht auf den Sensor und stört die Messung.	Identifizieren Sie die Licht- quelle (z. B. Sonne, die in einen offenen Tank oder ein durchsichtiges Rohr scheint) und verhindern Sie, das Licht auf das Pris- ma an der Sensorspitze fällt.
Meldung Image quality Iow. (Niedrige Abbildqualität)	Warning	Die wahrscheinlichste Ur- sache für diese Meldung sind geschichtete Ablage- rungen auf dem Prisma. Ein optisches Abbild ist weiterhin verfügbar, die Messqualität ist aber mög- licherweise nicht optimal.	Reinigen Sie das Prisma.

Problem	Relevanz	Ursache	Korrekturmaßnahmen	
Meldung No liquid detected. (Keine Flüssigkeit erkannt)	Warning	Das Gerät scheint ordnungs befindet sich jedoch keine P Prisma.	gemäß zu funktionieren, es Prozessflüssigkeit auf dem	
Meldung Calibration mode active. (Kalibriermodus aktiv)	Warning	Im Rahmen der BI-Kalib- rierprüfung kann das Re- fraktometer in den Kalib- riermodus versetzt wer- den. Wenn der Kalibrier- modus aktiv ist, berechnet das Refraktometer die Konzentration nicht.	Verifizieren Sie, dass der Kalibriermodus in allen verwendeten Benutzero- berflächen ausgeschaltet ist.	
Unerwartete Konzentrati- onsdrift	N. a.	 Bei einer Abweichung nach oben kommt geschicht Ablagerungen auf dem Prisma in Betracht, siehe PF Prism Wash System User Guide (M212808EN). Prüf Sie andernfalls, ob Kalibrierung (siehe BI-Kalibrierun (Seite 42)) sowie BI-Justierung (siehe BI-Justierung (Seite 56)) richtig sind. Letzteres kann nur in Insigh prüft werden. Eine gute Option zur Ermittlung der möglichen Kom zentrationsdrift besteht darin, das Messprotokoll vo Indigo520 zu überprüfen, sofern selbiges verfügbar Dieses Protokoll enthält neben dem BI und der Kon zentration auch den QF-Wert, dessen Veränderung geschichtete Ablagerungen auf dem Prisma hinwei kann. Siehe Indigo500 User Guide (M212287EN). 		

10.2 Fehlerstatus

Bestimmte Störungen führen dazu, dass der mA-Messwert auf den Fehlerausgangspegel zurückfällt, siehe Konfigurieren des Analogausgangs (Seite 59). Weitere Informationen enthält die folgende Tabelle.

Invalid calculation parameters. (Ungültige Berechnungsparameter): BI-

Justierungsparameter sind ungültig. Nehmen Sie eine BI-Justierung vor oder kontaktieren Sie helpdesk@vaisala.com.

Blank image corrupted. (Leeres Abbild schadhaft): Das leere Abbild für den IDS-

Abbilderkennungsalgorithmus ist schadhaft. Erstellen Sie ein leeres Abbild oder kontaktieren Sie helpdesk@vaisala.com.

Es gibt vier Fehlerstatusmeldungen (in aufsteigender Reihenfolge der Relevanz):

- 1. Info
- 2. Warning
- 3. Error
- 4. Critical

Das 32-Bit-Fehlercoderegister ist in zwei Arten von Bereichen unterteilt:

- Statusbits (Bild und Temperatur)
- Fehlerbits (Umgebung, Berechnung und System)

In Statusbereichen bilden die Bits dieses Bereichs einen Wert, der den Status dieser Messung darstellt. Wenn beispielsweise die vier Bits im Bildbereich 0x0110 (= 6 in Dezimaldarstellung) sind, lautet der Status der Bildmessung **External light level too high. (Außenlichtstärke zu hoch**).

In Fehlerbitbereichen stellt jedes Bit einen Fehler oder Status dar, die voneinander unabhängig sind. Das bedeutet, dass mehrere Fehler gleichzeitig aktiv sein können. Wenn beispielsweise die vier Bits im Berechnungsbereich 0x0110 lauten, sind **Temperature out of concentration curve range. (Temperatur außerhalb des Konzentrationskurvenbereichs)** und **Invalid calculation parameters. (Ungültige Berechnungsparameter**) aktiv.

Tabelle 9 Fehlerstatus

Status	Schwe- regrad	LED	mA- Fehler- status	Sekun- därer mA- Fehler- status	Mod- bus- Fehler- code- feld	Mod- bus- Fehler- code- bit	Anmerkung
Eingeschaltet	Normal	Grün	-	-	-	-	Das Gerät ist ein- geschaltet. Keine Kommunikation mit dem RS-485- Anschluss bei er- kannter Modbus- ID des Geräts.
RS-485-Antwort	Normal	Grün, blin- kend	-	-	-	-	Das Gerät hat ei- ne Kommunikati- on mit dem RS-485-Anschluss empfangen, ent- weder von einem Modbus RTU- Master oder ei- nem Messwertge- ber Indigo520.
Image quality Iow. (Abbildqualität niedrig)	Warn- ing	Gelb	-	-	Bild	1	Die Steigung des optischen Abbilds ist nicht eindeu- tig. Mögliche Gründe hierfür sind: geschichtete Ablagerungen auf dem Prisma, übermäßiges thermisches Rau- schen oder Au- ßenlicht.

Status	Schwe- regrad	LED	mA- Fehler- status	Sekun- därer mA- Fehler- status	Mod- bus- Fehler- code- feld	Mod- bus- Fehler- code- bit	Anmerkung
External light level high. (Außenlichtstärk e hoch)	Warn- ing	Gelb	-	-	Bild	2	Außenlicht stört die Messung.
Prism coating detected. (Geschichtete Ablagerungen auf dem Prisma erkannt)	Error	Rot	x	-	Bild	3	Auf dem Prisma befinden sich ge- schichtete Abla- gerungen und es muss gereinigt werden.
No liquid detected. (Keine Flüssigkeit erkannt)	Warn- ing	Gelb	x	x	Bild	4	Keine Flüssigkeit erkannt, z. B. we- gen einem leeren Rohr. Keine Probe zur Messung vor- handen.
No optical image. (Kein optisches Abbild)	Error	Rot	x	-	Bild	5	Kritischer Fehler. Das optische Ab- bild kann nicht extrahiert werden. Wenden Sie sich an den Helpdesk.
External light level too high. (Außenlichtstärk e zu hoch)	Error	Rot	x	-	Bild	6	Außenlicht stört die Messung er- heblich.
Temperature measurement error. (Temperaturmess abweichung)	Error	Rot	x	-	Tempe- ratur	1	Eine Temperatur- messung ist nicht möglich. Mögli- cherweise liegt ein Temperatur- sensorfehler vor.

Status	Schwe- regrad	LED	mA- Fehler- status	Sekun- därer mA- Fehler- status	Mod- bus- Fehler- code- feld	Mod- bus- Fehler- code- bit	Anmerkung
Concentration out of concentration curve range. (Konzentration außerhalb des durch die Kurve definierten Bereichs)	Warn- ing	Gelb	-	-	Berech- nung	1	Die Konzentration liegt für die ver- wendete Kon- zentrationskurve außerhalb des gültigen Bereichs. Die Zuverlässig- keit der Messung kann nicht garan- tiert werden. Die Ausgänge sind weiterhin aktiv.
Temperature out of concentration curve range. (Temperatur außerhalb des durch die Kurve definierten Bereichs)	Warn- ing	Gelb	-	-	Berech- nung	2	Die Temperatur liegt für die ver- wendete Kon- zentrationskurve außerhalb des gültigen Bereichs. Die Zuverlässig- keit der Messung kann nicht garan- tiert werden. Die Ausgänge sind weiterhin aktiv.
Invalid calculation parameters. (Ungültige Berechnungspara meter)	Error	-	x	-	Berech- nung	4	Die C-Parameter sind nicht richtig eingestellt.
Calibration mode active. (Kalibriermodus aktiv)	Normal	-	x	-	Berech- nung	8	Der Kalibriermo- dus ist aktiviert.
Internal temperature too high. (Innentemperatur zu hoch)	Error	Rot	x	-	Umge- bung	1	Die Temperatur am Elektronikfach übersteigt 65 °C.
Internal humidity too high. (Interne Feuchte zu hoch)	Error	Rot	x	-	Umge- bung	2	Die Feuchte am Elektronikfach überschreitet 60 % rF.

Status	Schwe- regrad	LED	mA- Fehler- status	Sekun- därer mA- Fehler- status	Mod- bus- Fehler- code- feld	Mod- bus- Fehler- code- bit	Anmerkung
Blank image corrupted. (Leeres Abbild schadhaft)	Error	Rot	x	-	System	2	Systemfehler. Wenden Sie sich an den techni- schen Support.

10.3 Messstatusdetails

Es gibt verschiedene Messstatus, die Sie auf der Registerkarte **Diagnostics** der Software Insight anzeigen können.

- K-Messstatus
- T-Messstatus
- Feldprobenstatus

Tabelle 10 Messstatusdetails

Meldung	K-Messstatus	T-Messstatus	Feldprobenstatus
None (Keine)	Keine Fehler erkannt.	Keine Fehler erkannt.	Keine Fehler erkannt.
Unavailable (S) (Nicht verfügbar)	Die Konzentrations- messung ist nicht ver- fügbar, da auf dem Prisma keine Flüssig- keit erkannt wird oder sich das Gerät im Ka- libriermodus befindet.	-	Es wurde keine Feld- probe entnommen.
Unreliable (R) (Nicht zuverlässig)	Das Refraktometer misst eine Temperatur außerhalb des Messbe- reichs der Konzentrati- onskurve. Die Tempe- raturkompensation funktioniert möglicher- weise nicht richtig.	-	Bei der Entnahme der Feldprobe ist eine Warnung bei der Ab- bilderkennung aufge- treten.
Under range (U) (Unter Bereich)	Das Refraktometer misst einen Wert au- ßerhalb des Messbe- reichs der Konzentrati- onskurve.	Das Refraktometer misst einen Wert au- ßerhalb des Messbe- reichs der Konzentrati- onskurve.	-

Meldung	K-Messstatus	T-Messstatus	Feldprobenstatus
Over range (O) (Über Bereich)	Das Refraktometer misst einen Wert au- ßerhalb des Messbe- reichs der Konzentrati- onskurve.	Das Refraktometer misst einen Wert au- ßerhalb des Messbe- reichs der Konzentrati- onskurve.	-
Locked (L) (Verriegelt)	Der Konzentrations- wert wird während der Prismareinigung ge- sperrt.	Der Temperaturwert wird während der Pris- mareinigung gesperrt.	-
Failure (F) (Fehler)	Kein optisches Abbild verfügbar. Das Refraktometer muss gewartet werden. Wenden Sie sich an helpdesk@vaisala.com.	Der Temperatursensor ist ausgefallen. Das Refraktometer muss gewartet werden. Wenden Sie sich an helpdesk@vaisala.com.	Es ist kein optisches Abbild verfügbar oder der Temperatursensor ist während der Ent- nahme der Feldprobe ausgefallen.
Not ready (W) (Nicht bereit)	-	-	Die Feldprobe wird derzeit gemessen aber die Ergebnisse liegen noch nicht vor.

10.4 Laborkalibrierung der Konzentration

Warten Sie, bis normale, stabile Prozessbedingungen vorliegen. Extrahieren Sie eine Probe und führen Sie eine Feldkalibrierung durch. Wenn die erforderliche Feldjustierung zu groß ausfällt und der Diagnosestatus einen normalen Betrieb anzeigt, kann die BI-Messung die Ursache sein. Dies kann durch die BI-Kalibrierprüfung überprüft werden.

- Indigo520: Berechnen der Feldjustierung (Seite 40), Durchführen einer BI-Kalibrierung mit dem Indigo520 (Seite 43)
- Insight: Berechnen der Feldjustierung (Seite 51), Durchführen einer BI-Kalibrierung mit Insight (Seite 54).

10.5 BI-Kalibrierfehler

Es wird empfohlen, alle fehlerhaften Punkte mindestens noch einmal zu kalibrieren. Der Kalibrierfehler kann eine externe Ursache haben.

- Temperaturbedingte Fehler:
 - Es liegt eine Differenz zwischen Probentemperatur und Refraktometertemperatur vor.
 - Die gemessene Temperatur liegt außerhalb des angegebenen Kalibrierbereichs von +20 ... +30 $^{\circ}\mathrm{C}.$
 - Die Temperatur ist möglicherweise nicht ausreichend stabil und schwankt. Dies äußert sich bei der BI-Kalibrierung in einer langen Wartezeit für die Stabilisierung.

Wenn der Kalibrierfehler durch die Temperatur verursacht wird, müssen Sie warten, bis sich die Temperaturen von Refraktometer und Probenflüssigkeit im Kalibrierbereich stabilisiert haben. Wiederholen Sie die Kalibrierung nach einer gewissen Zeit.

- Durch die Referenzflüssigkeit verursachte Fehler:
 - Auf dem Prisma befindet sich Belag. Reinigen Sie das Prisma und den Probenhalter und wiederholen Sie die Kalibrierung dann.
 - Die Probenflüssigkeit enthält Verunreinigungen. Reinigen Sie das Prisma und den Probenhalter. Tauschen Sie die Probenflüssigkeit aus und wiederholen Sie dann die Kalibrierung.
 - Das Verfallsdatum der Referenzflüssigkeit ist abgelaufen.
 Überprüfen Sie das Verfallsdatum und verwenden Sie bei Bedarf eine andere Referenzflüssigkeit. Beachten Sie, dass die Flüssigkeiten möglicherweise schneller verfallen, wenn die Behälter längere Zeit offen stehen.

Weitere Informationen

Analysieren des optischen Abbilds (Seite 146)

11. Technische Daten

11.1 Kompatibilität

Das Refraktometer PR53 ist mechanisch mit den meisten Refraktometern der Typen PR-23 und PR-43 kompatibel. Das Kommunikations- und Elektroniksystem muss dem Refraktometerwechsel entsprechend aktualisiert werden.

11.2 Allgemeine PR53 Spezifikationen

Tabelle 11 Messleistung der Serie PR53

Eigenschaft	Beschreibung/Wert	
Brechungsindex		
Messbereich	1,32–1,53 nD	
	(entspricht 0–100 °Bx)	
Genauigkeit	±0,00014 nD (0,1 °Bx) ¹⁾	
Wiederholbarkeit	±0,00002 nD ²⁾	
Auflösung	±0,000015 nD	
Reaktionszeit T ₆₃ mit Standarddämpfung	10 s ³⁾	
Messzyklus	1/s	
Langzeitstabilität	Max. 0,1 % v. Ew./a	
Temperatur		
Genauigkeit bei +20 °C	±0,3 °C ¹⁾	
Sensorklasse	F0.15 IEC 60751	
Temperaturkoeffizient	±0,002 °C/C	

 Genauigkeit im Verhältnis zur Kalibrierreferenz, einschließlich Nichtlinearität, Hysterese bei +20 °C

2) Wiederholbarkeit, Konfidenzniveau k=2, einschließlich Rauschen, bei Ta = +20 °C, mit Standard-Tiefpassfilter

3) Mit Standard-Tiefpassfilter.

Für die Messleistung des PR53SD siehe Technische Daten der PR53SD (Seite 105).

Tabelle 12 Ein- und Ausgänge der Serie PR53

Eigenschaft	Spezifikation		
Stromversorgung	Stromversorgung		
Betriebsspannungsbereich	24 VDC nominal (9-30 VDC)		
Leistungsaufnahme	Unter 1 W		
Schutzklasse	3, PELV		
Ausgänge			
Messgrößen	RI, Temperatur, Konzentration, Qualitätsfaktor		
Analogausgänge			
mA	Stromabgebend, isoliert, NAMUR NE 43, konfi- gurierbar		
mA-Bereich	3,8-20,5 mA		
Schleifenimpedanz	max. 600 Ω		
Genauigkeit Analogausgang bei +20 °C	±0,1 % v. Ew. (±0,00002 RI)		
Digitalausgänge			
Digitalausgang	RS-485, nicht isoliert		
Maximale Kabellänge	300 m (digital)		
Unterstütztes Protokoll	Modbus RTU		
Anschlüsse			
Externe Anschlüsse	1 × M12 M, 4-polig, A-codiert ¹⁾		
	2 Kabelverschraubungen (M16 × 1,5), Kabelquer- schnitt 5 10 mm/Adapter für Kabelrohreinfüh- rung (M16 × 1,5) ²⁾ /NPT ½"		

1) Weitere Informationen zum USB2-Adapter und zur Insight Software finden Sie unter www.vaisala.com/insight.

2) Kabelkanalverschraubung ist nicht kompatibel mit Safe-Drive System PR53

11.3 PR53AC Spezifikationen

Tabelle 13 PR53AC Betriebsumgebung

Eigenschaft	Spezifikation	
Prozessparameter		
Prozesstemperatur	-40 +150 °C ¹⁾	

Eigenschaft	Spezifikation
Temperaturauslegung	+180 °C ²⁾
Druckauslegung	40 bar ³⁾
Betriebsumgebung	
Lagertemperaturbereich	−40 +65 °C
Betriebstemperaturbereich	-40 +60 °C
Maximale Betriebshöhe	2000 m
Relative Feuchte	0 100 %rF
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).

1) -40 ... +130 °C, EPDM-Dichtung, -40 ... +150 °C, PTFE-Dichtung

2) Maximale Temperaturspitze

3) Maximal +20 °C, Betriebsdruck bis Klammernenndruck

Abbildung 24 PR53AC Prozessdruck

Tabelle 14 PR53AC Konformität

Eigenschaft	Spezifikation
Elektromagnetische Verträglichkeit (EMV)	EN 61326-1, industrielle Umgebung
Sicherheit	IEC/EN/UL 61010-1
Druck	CRN, alle Regionen, ASME BPVC Sec VIII Div. 1, Ausgabe 2021
Werkstoffkonformität	FDA 21 CFR 177.150, 177.2600, 177.1550
	EC 1935/2004
	EC 2023/2006 (GMP, gute Herstellungspraxis für Materialien und Gegenstände)
	EU 10/2011
Konformitätszeichen	CE, China RoHS, RCM, UKCA
Vibrationen und Stöße	Geprüft gemäß
	IEC 60068-2
Zertifizierungen	MET Listed (USA und Kanada)

Tabelle 15 Hygienekonformität von PR53AC

Eigenschaft	Spezifikation
Hygienisches Design	3-A 46-04
	EHEDG

Eigenschaft	Spezifikation
Konformitätszeichen	3-A, EHEDG (für EHEDG-konforme Installation eine 2,5"/4"-Sanitary-Dichtung verwenden)
Biokompatibilität	USP Class VI <88>, 70 °C
ADI-frei (frei von Inhaltsstoffen tierischen Ur- sprungs)	Ja

Tabelle 16 PR53AC Allgemeine Daten

Eigenschaft	Spezifikation	
Benetzte Teile		
Sensorkopf	EN 1.4435 BN2 (AISI 316L) ¹⁾	
Oberflächenrauheit	Ra 0,8 μm	
	Ra 0,38 μ m elektropoliert ¹⁾	
Prisma	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ²⁾	
Prismadichtung	Modifiziertes PTFE ³⁾	
Sanitary-Dichtung, 2,5″	EPDM ²⁾	
Typ-N-Dichtung	EPDM ²⁾	
Schweißhülse	EN 1.4435 (AISI 316L) ^{1) 4)}	
	ASME BPE-2019 (DIN 32676-C)	
Nicht benetzte Teile		
Werkstoff Gehäuse	EN 1.4404 (AISI 316L)	
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)	
Kabelverschraubung	EN 1.4305 (AISI 303)	
	HUMMEL 1.693.1600.50	
Blindstopfen	EN 1.4305 (AISI 303)	
	AGRO 8717.96.08.70)	
Rohrverschraubungsanschluss	EN 1.4404 (AISI 316L)	
	Vaisala, DRW257718, M16 × 1,5 / NPT ½"	
M12-Stecker	Verschraubung, EN 1.4305 (AISI 303)	
	Kontakte, CuZn mit Ni/Au-Beschichtung	
	Phoenix Contact, 1405233, M12/4(M), A, 4 × 0,34 mm ² , TPE, 0,5 m	
	Träger, PA 6.6	

Eigenschaft	Spezifikation
Sanitary-Schelle, 2,5"	EN 1.4301 (AISI 304) ²⁾
Typ-N-Schelle	EN 1.4301 (AISI 304) ²⁾
Kabel	2 × 2 × 0,5 mm2 PUR-Mantel, grau, 10 m, mehre- re Litzen, mit Aderendhülsen
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1
Gewicht	2,7 kg

- 1) EN 10204/3.1-Zertifikat enthalten.
- 2) Herstellerdeklaration liegt bei.
- 3) ADI-frei, FDA 21 C.F.R 177.1550, 3A Sanitary-Standard, USP Class VI <88>, 70 °C.
- 4) 3-A-Zertifikat, EHEDG-Zertifikat.

11.4 Technische Daten der PR53AP

Tabelle 17 PR53AP Betriebsumgebung

Eigenschaft	Spezifikation	
Prozessparameter		
Prozesstemperatur	-40 +150 °C, ¹⁾	
Temperaturauslegung	+180 °C ²⁾	
Druckauslegung	40 bar ³⁾	
Betriebsumgebung		
Lagertemperaturbereich	-40 +65 °C	
Betriebstemperaturbereich	-40 +60 °C	
Maximale Betriebshöhe	2000 m	
Relative Feuchte	0 100 %rF	
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend	
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.	

Eigenschaft	Spezifikation
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).

- 1) -40 ... +130 °C, EPDM-Dichtung, -40 ... +150 °C, PTFE-Dichtung
- 2) Maximale Temperaturspitze
- 3) Maximal +20 °C, Betriebsdruck bis Klammernenndruck

Abbildung 25 PR53AP, 170 mm Tiefe Prozesstemperatur (indikativ)

Tabelle 18 PR53AP Konformität

Eigenschaft	Spezifikation
Elektromagnetische Verträglichkeit (EMV)	EN 61326-1, industrielle Umgebung
Sicherheit	IEC/EN/UL 61010-1
Druck	CRN, alle Regionen, ASME BPVC Sec VIII Div. 1, Ausgabe 2021
Werkstoffkonformität	FDA 21 CFR 177.150, 177.2600, 177.1550
	EC 1935/2004
	EC 2023/2006 (GMP, gute Herstellungspraxis für Materialien und Gegenstände)
	EU 10/2011
Konformitätszeichen	CE, China RoHS, RCM, UKCA
Vibrationen und Stöße	Geprüft gemäß
	IEC 60068-2
Zertifizierungen	MET Listed (USA und Kanada)

Tabelle 19 Hygienekonformität von PR53AP

Eigenschaft	Spezifikation
Hygienisches Design	3-A 46-04
	EHEDG ¹⁾

Eigenschaft	Spezifikation
Konformitätszeichen	3-A, EHEDG ²⁾
Biokompatibilität	USP Class VI <88>, 70 °C
ADI-frei (frei von Inhaltsstoffen tierischen Ur- sprungs)	Ja

1) Ohne Tankbodenflansch

2) Für EHEDG-konforme Installation eine 2,5"/4"-Sanitary-Dichtung verwenden.

Tabelle 20 PR53AP Allgemeine Daten

Eigenschaft	Spezifikation
Benetzte Teile	
Sensorkopf	EN 1.4435 BN2 (AISI 316L) ¹⁾
Waschdüse	EN 1.4404 (AISI 316L) ¹⁾
	EPDM-Dichtung ²⁾
Oberflächenrauheit	Ra 0,8 μm
Prisma	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ²⁾
Prismadichtung	Modifiziertes PTFE ³⁾
2,5"/4"-Sanitary-Dichtung	EPDM ²⁾
Tankbodendichtung MT4 DN25/1T für Tankbo- denflansch	EPDM ²⁾
Tankunterflansch	AISI 316L ¹⁾
Schweißhülse	EN 1.4435 (AISI 316L) ^{1) 4)}
Nicht benetzte Teile	
Werkstoff Gehäuse	EN 1.4404 (AISI 316L)
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)
Kabelverschraubung	EN 1.4305 (AISI 303)
	HUMMEL 1.693.1600.50
Blindstopfen	EN 1.4305 (AISI 303)
	AGRO 8717.96.08.70)
Rohrverschraubungsanschluss	EN 1.4404 (AISI 316L)
	Vaisala, DRW257718, M16 × 1,5 / NPT ½"

Eigenschaft	Spezifikation
M12-Stecker	Verschraubung, EN 1.4305 (AISI 303)
	Kontakte, CuZn mit Ni/Au-Beschichtung
	Phoenix Contact, 1405233, M12/4(M), A, 4 × 0,34 mm ² , TPE, 0,5 m
	Träger, PA 6.6
2.5"/4"-Sanitary-Schelle	EN 1.4301 (AISI 304) ²⁾
Kabel	2 × 2 × 0,5 mm ² PUR-Mantel, schwarz, 10 m, mehrere Litzen, mit Aderendhülsen
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1
Gewicht	3,6-4,2 kg

- 1) Werkstoffzertifikat inklusive
- 2) Herstellerdeklaration liegt bei.
- 3) ADI-frei, FDA 21 C.F.R 177.1550, 3A Sanitary-Standard, USP Class VI <88>, 70 °C
- 4) 3-A-Zertifikat, EHEDG-Zertifikat.

11.5 Technische Daten der PR53GC

Tabelle 21 PR53GC Betriebsumgebung

Eigenschaft	Spezifikation
Prozessparameter	
Prozesstemperatur	-40 +150 °C
Temperaturauslegung	+180 °C ¹⁾
Betriebsumgebung	
Lagertemperaturbereich	−40 +65 °C
Betriebstemperaturbereich	-40 +60 °C
Maximale Betriebshöhe	2000 m
Relative Feuchte	0 100 %rF
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.

Eigenschaft	Spezifikation
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).

1) Maximale Temperaturspitze

Eigenschaft	Spezifikation
Elektromagnetische Verträglichkeit (EMV)	EN 61326-1, industrielle Umgebung

Eigenschaft	Spezifikation
Sicherheit	IEC/EN/UL 61010-1
Druck	CRN, alle Regionen, ASME BPVC Sec VIII Div. 1, Ausgabe 2021
Konformitätszeichen	CE, China RoHS, RCM, UKCA
Vibrationen und Stöße	Geprüft gemäß IEC 60068-2

Tabelle 23 PR53GC Allgemeine Daten

Eigenschaft	Spezifikation
Benetzte Teile	
Sensorkopf	EN 1.4404 (AISI 316L)
	EN 2.4660 (Alloy 20)
	EN 2.4819 (Alloy C276)
	1)
Oberflächenrauheit	Ra 0,8 µm
Prisma	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ²⁾
Prismadichtung	Modifiziertes PTFE ²⁾
Dichtung für Sandvik Coupling L	PTFE ²⁾
Schweißhülse	EN 1.4404 (AISI 316L)
	EN 2.4660 (Alloy 20)
	EN 2.4819 (Alloy C276)
	2)
Nicht benetzte Teile	
Werkstoff Gehäuse	EN 1.4404 (AISI 316L)
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)
Kabelverschraubung	EN 1.4305 (AISI 303)
	HUMMEL 1.693.1600.50
Blindstopfen	EN 1.4305 (AISI 303)
	AGRO 8717.96.08.70)
Rohrverschraubungsanschluss	EN 1.4404 (AISI 316L)
	Vaisala, DRW257718, M16 × 1,5 / NPT ½"

Eigenschaft	Spezifikation
M12-Stecker	Verschraubung, EN 1.4305 (AISI 303)
	Kontakte, CuZn mit Ni/Au-Beschichtung
	Phoenix Contact, 1405233, M12/4(M), A, 4 × 0,34 mm ² , TPE, 0,5 m
	Träger, PA 6.6
Schelle für Sandvik Coupling L (60,3 mm)	EN 1.4301 (AISI 304) ²⁾
Kabel	2 × 2 × 0,5 mm ² PUR-Mantel, grau, 10 m, mehre- re Litzen, mit Aderendhülsen
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1
Gewicht	2,7 kg

1) Werkstoffzertifikat inklusive.

2) Herstellerdeklaration liegt bei.

11.6 PR53GP Spezifikationen

Tabelle 24 PR53GP Betriebsumgebung

Eigenschaft	Spezifikation	
Prozessparameter		
Prozesstemperatur	-40 +150 °C	
Temperaturauslegung	+180 °C ¹⁾	
Druckauslegung	40 bar ²⁾	
Betriebsumgebung		
Lagertemperaturbereich	-40 +65 °C	
Betriebstemperaturbereich	-40 +60 °C	
Maximale Betriebshöhe	2000 m	
Relative Feuchte	0 100 %rF	
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend	
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.	

Eigenschaft	Spezifikation
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).

1) Maximale Momentantemperaturspitze

2) Maximum bei +20 °C, Betriebsdruck bis Prozessanschlussnenndruck

Abbildung 30 PR53GP Prozesstemperatur (indikativ)

Tabelle 25 PR53GP Konformität

Eigenschaft	Spezifikation
Elektromagnetische Verträglichkeit (EMV)	EN 61326-1, industrielle Umgebung
Sicherheit	IEC/EN/UL 61010-1
Druck	CRN, alle Regionen, ASME BPVC Sec VIII Div. 1, Ausgabe 2021
Konformitätszeichen	CE, China RoHS, RCM, UKCA
Vibrationen und Stöße	Geprüft gemäß IEC 60068-2

Tabelle 26PR53GP Allgemeine Daten

Eigenschaft	Spezifikation
Benetzte Teile	
Sensorkopf	EN 1.4404 (AISI 316L) ¹⁾
Oberflächenrauheit	Ra 0,8 µm
Prisma	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ²⁾
Prismadichtung	Modifiziertes PTFE ²⁾
Dichtung für Sandvik Coupling L	PTFE ²⁾
Schweißhülse für Sandvik Coupling L	EN 1.4404 (AISI 316L) ¹⁾
Teile der Waschdüse	EN 1.4404 (AISI 316L) ¹⁾
Nicht benetzte Teile	
Gehäuse	EN 1.4404 (AISI 316L)
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)
Kabelverschraubung	EN 1.4305 (AISI 303)
	HUMMEL 1.693.1600.50
Blindstopfen	EN 1.4305 (AISI 303)
	AGRO 8717.96.08.70)
Rohrverschraubungsanschluss	EN 1.4404 (AISI 316L)
	Vaisala, DRW257718, M16 × 1,5 / NPT ½"

Eigenschaft	Spezifikation
M12-Stecker	Verschraubung, EN 1.4305 (AISI 303)
	Kontakte, CuZn mit Ni/Au-Beschichtung
	Phoenix Contact, 1405233, M12/4(M), A, 4 × 0,34 mm ² , TPE, 0,5 m
	Träger, PA 6.6
Flansch	EN 1.4404 (AISI 316L)
	Abmessungen und Toleranzen gemäß AS- ME B16.5, DIN 2543, JIS B2220
Schelle für Sandvik Coupling L, 88,9 mm	EN 1.4301 (AISI 304)
Kabel	2 × 2 × 0,5 mm ² PUR-Mantel, grau, 10 m, mehre- re Litzen, mit Aderendhülsen
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1
Gewicht	PR53GP, 2"-Flansch, 7,2 kg – 7,7 kg
	PR53GP, 3"-Flansch, 10,5 11,7 kg
	PR53, Sandvik Coupling L, 5,1 kg

- 1) Werkstoffzertifikat inklusive
- 2) Herstellerdeklaration liegt bei.

11.7 Technische Daten der PR53M

Tabelle 27 PR53M Betriebsumgebung

Eigenschaft	Spezifikation
Prozessparameter	
Prozesstemperatur	-10 +130 °C
Druck	10 bar bei 20 °C, 4,5 bar bei 130 °C
Betriebsumgebung	
Lagertemperaturbereich	-40 +65 °C
Betriebstemperaturbereich	-40 +60 °C
Maximale Betriebshöhe	2000 m
Relative Feuchte	0 100 %rF
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.

Eigenschaft	Spezifikation
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).

Tabelle 28 PR53M Konformität

Eigenschaft	Spezifikation
Elektromagnetische Verträglichkeit (EMV)	EN 61326-1, industrielle Umgebung
Sicherheit	IEC/EN/UL 61010-1
Konformitätszeichen	CE, China RoHS, RCM, UKCA
Vibrationen und Stöße	Geprüft gemäß
	IEC 60068-2

Tabelle 29 PR53M Mechanische Spezifikationen

Eigenschaft	Spezifikation
Benetzte Teile	
Prisma und Saphirbeschichtung	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ¹⁾
Durchflusszelle	Ultrareines PTFE ¹⁾
Prismadichtung	Modifiziertes PTFE ¹⁾
Prozessdichtung	Kalrez W240UP ¹⁾
Nicht benetzte Teile	
Gehäuse	Edelstahl (AISI 316)
Beschichtung	Cerakote, weiß (PR53M mit integrierten Armatu- ren)
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)
Kabel	2 × 2 × 0,5 mm ² PUR-Mantel, grau, 10 m, mehre- re Litzen, mit Aderendhülsen
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1

1) Herstellerdeklaration liegt bei.

11.8 Technische Daten der PR53SD

Tabelle 30 PR53SD Messgrößen

Eigenschaft	Beschreibung/Wert
Brechungsindex	

Eigenschaft	Beschreibung/Wert
Messbereich	1,32–1,53 nD (0–90 % Gesamtfeststoffgehalt), Prisma im Normalbereich
	1,36–1,57 nD (20–100 % Gesamtfeststoffgehalt), Prisma im hohen Bereich
	(entspricht 0–100 °Bx)
Genauigkeit	±0,00014 nD (0,1 °Bx) ¹⁾
Wiederholbarkeit	±0,00002 nD ²⁾
Auflösung	±0,000015 nD
Reaktionszeit T ₆₃ mit Standarddämpfung	10 s ³)
Messzyklus	1/s
Langzeitstabilität	Max. 0,1 % v. Ew./a
Temperatur	
Genauigkeit bei +20 °C	±0,3 °C ¹⁾
Sensorklasse	F0.15 IEC 60751
Temperaturkoeffizient	±0,002 °C/C

1) Genauigkeit im Verhältnis zur Kalibrierreferenz, einschließlich Nichtlinearität, Hysterese bei +20 °C

2) Wiederholbarkeit, Konfidenzniveau k=2, einschließlich Rauschen, bei Ta = +20 °C, mit Standard-Tiefpassfilter

3) Mit Standard-Tiefpassfilter.

Tabelle 31 PR53SD Betriebsumgebung

Eigenschaft	Spezifikation	
Prozessparameter		
Prozesstemperatur	-40 +170 °C	
Temperaturauslegung	+180 °C ¹⁾	
Druckauslegung/maximaler Betriebsdruck	35 bar	
Maximaler Druck bei Entnahme	35 bar	
Betriebsumgebung		
Lagertemperaturbereich	-40 +65 °C	
Betriebstemperaturbereich	-40 +60 °C	
Maximale Betriebshöhe	2000 m	
Relative Feuchte	0 100 %rF	

Eigenschaft	Spezifikation
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).

1) Maximale Momentantemperaturspitze

Abbildung 34 PR53SD Prozesstemperatur (indikativ)

Tabelle 32 PR53SD Konformität

Spezifikation
N 61326-1, industrielle Umgebung
EC/EN/UL 61010-1
CRN, alle Regionen, ASME BPVC Sec VIII Div. 1, Ausgabe 2021
CE, China RoHS, RCM, UKCA
Geprüft gemäß EC 60068-2

Tabelle 33 PR53SD Mechanische Spezifikationen

Eigenschaft	Spezifikation
Benetzte Teile	

Eigenschaft	Spezifikation
Sensorkopf	EN 1.4462 ¹⁾
Prisma	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ²⁾
Prozessdichtung	Co-Cr-Ni-Legierung (AMS 5876) mit PTFE-Aus- kleidung ²⁾
Prismadichtung	Modifiziertes PTFE ²⁾
SD-Flansch	EN 1.4462 ¹⁾
Waschdüse	EN 1.4462 ²⁾
Nicht benetzte Teile	
Gehäuse	EN 1.4404
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)
Gewindebolzen, Drehmoment für M12: 75 Nm, Drehmoment für M10: 40 Nm	EN 1.4435 (AISI 316L), Festigkeitslasse 8.8
Flansche (3 Stück)	EN 1.4462 (AISI 2205)
	ASME B16.5, DIN 2543
Kabel	2 × 2 × 0,5 mm ² PUR-Mantel, grau, 10 m, mehre- re Litzen, mit Aderendhülsen
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1
Gewicht	Retraktor und Waschanschluss: 15 kg
	Refraktometer: 5,4 kg

1) EN 10204/3.1-Zertifikat inklusive.

2) Herstellerdeklaration liegt bei.

11.9 Technische Daten der PR53W

Tabelle 34 PR53W Betriebsumgebung

Eigenschaft	Spezifikation	
Prozessparameter		
Prozesstemperatur	-10 +130 °C	
Betriebsdruckbereich	10 bar	
Betriebsumgebung		
Lagertemperaturbereich	-40 +65 °C	
Eigenschaft	Spezifikation	
---------------------------	--	--
Betriebstemperaturbereich	-40 +60 °C	
Maximale Betriebshöhe	2000 m	
Relative Feuchte	0 100 %rF	
Lagerfeuchtebereich	0 100 %rF, nicht kondensierend	
UL 50E (NEMA)-Einstufung	Typ 4X: Staubdicht. Geschützt vor Korrosion und Strahlwasser.	
Schutzart	IP66: Staubdicht. Schutz gegen starkes Strahl- wasser aus beliebigem Winkel.	
	IP67: Staubdicht. Schutz gegen zeitweiliges Un- tertauchen unter Standardbedingungen (Druck und Zeit).	

Abbildung 35 PR53W Prozesstemperatur (indikativ)

Tabelle 35 PR53W Konformität

Eigenschaft	Spezifikation
Elektromagnetische Verträglichkeit (EMV)	EN 61326-1, industrielle Umgebung
Sicherheit	IEC/EN/UL 61010-1
Konformitätszeichen	CE, China RoHS, RCM, UKCA
Vibrationen und Stöße	Geprüft gemäß
	IEC 60068-2

Tabelle 36 PR53W Mechanische Spezifikationen

Eigenschaft	Spezifikation		
Benetzte Teile			
Prisma und Saphirbeschichtung	Monokristalliner Saphir, 99,996 % Al ₂ O ₃ ¹⁾		
Auskleidung des Ventilgehäuses	ETFE ¹⁾		
Prismadichtung	Modifiziertes PTFE ¹⁾		
Ventilgehäusedichtung	PTFE ¹⁾		
Prozessdichtung	Kalrez W240UP ¹⁾		
Ventilgehäuse, Bolzen M10	EN 1.4404 (AISI 316L) ¹⁾		
Nicht benetzte Teile			
Ventilgehäuse	Gusseisen ¹⁾		
Werkstoff Gehäuse	EN 1.4404 (AISI 316L)		
Schrauben, TX20, Drehmoment 2,0 Nm	EN 1.4404 (AISI 316L)		
Kabel	2 × 2 × 0,5 mm ² PUR-Mantel, grau, 10 m, mehre- re Litzen, mit Aderendhülsen		
	Flammhemmend gemäß IEC 60332-1-2, FT1, VW1		

1) Herstellerdeklaration liegt bei.

11.10 Ersatzteile und Zubehör

Tabelle 37 Spezifikationen der Verbindungskabel

Eigenschaft	Spezifikation	
Maximale Kabellänge	300 m	
Datentyp	Abgeschirmt, mehrere Litzen	
Abmessungen	Außendurchmesser 5–10 mm, 0,2–2,5 mm ² , Ab- isolierlänge 10–12 mm	
Leistungsschalter (zwischen Indigo520 und Stromquelle)	1 A (träge)	

Tabelle 38 Ersatzteile

Beschreibung	Bestellnummer
2,5"-EPDM-Dichtung	278220SP
Trocknungsmittelkapseln (6 Stück)	238440SP
H72 Prisma und Dichtung	278253SP
H73 Prisma und Dichtung	278254SP
Absperrventil	275267SP
Rückschlagventil	278021SP
PR53SD Dampfwaschdüse	DRW258211SP
Prismadichtung	DRW252500SP
Dampfabsperrventil	277082SP
Dampfschlauch	ASM215065SP
Sieb	265983SP
Temperatursensor lang	278286SP
Temperatursensor kurz	278287SP

Tabelle 39 Zubehör

Zubehör	Bestellnummer
USB-Adapter für Serviceschnittstelle, für Servicesoftware Insight (siehe www.vaisala.com/ insight)	USB2
Instrumentenkabel, 2 × 2 × 0,5 mm ² , PUR-Man- tel, grau, offene Aderenden, 10 m, flammhem- mend gemäß IEC 60332-1-2, FT1, VW1	CBL211266-10M
Instrumentenkabel, 2 × 2 × 0,5 mm ² , PUR-Man- tel, grau, offene Aderenden, 30 m, flammhem- mend gemäß IEC 60332-1-2, FT1, VW1	CBL211266-30M
Instrumentenkabel, 2 × 2 × 0,5 mm ² , PUR-Man- tel, grau, offene Aderenden, 50 m, flammhem- mend gemäß IEC 60332-1-2, FT1, VW1	CBL211266-50M
Kühlabdeckung	ASM214675SP
Verifizierungssatz (5 Stück): 1.33, 1.37, 1.42, 1.47, 1.52	280380SP
Kalibrierungssatz (14 Stück): 1.32, 1.33, 1.35, 1.36, 1.37, 1.38, 1.40, 1.42, 1.45, 1.47, 1.50, 1.52, 1.53, 1.57	278292SP

Zubehör	Bestellnummer
Spezialkit für hohe Reichweiten (8 Stück): 1.42, 1.47, 1.53, 1.57, 1.60, 1.62, 1.67, 1.72	278293SP
Probenhalter und Deckel	278295SP

11.11 Recyclinganweisungen

Diese Recyclinganweisungen leiten Sie bei der Handhabung dieses Vaisala Produkts am Ende seiner Lebensdauer an. Da Abfallvorschriften und -infrastruktur je nach Land variieren, enthalten diese Anweisungen nur Angaben zu den voneinander zu trennenden Komponenten und zu deren Handhabung. Befolgen Sie bei der Entsorgung des Produkts immer die örtlichen Vorschriften. Vaisala empfiehlt, die bestmöglichen Methoden zum Recycling anzuwenden, um Beeinträchtigungen der Umwelt zu verringern.

Vaisala erfüllt die Anforderungen der EU-Richtlinie über Elektro- und Elektronik-Altgeräte (WEEE-Richtlinie). Diese Richtlinie soll Umweltbeeinträchtigungen durch Elektro- und Elektronikgeräte minimieren, indem Wiederverwendung und Recycling gesteigert und die Menge der auf Deponien entsorgten Elektro- und Elektronik-Altgeräte verringert werden. Dieses Symbol gibt an, dass das Produkt unabhängig von anderen Abfällen gesammelt und angemessen entsorgt werden muss.

Abbildung 36 Materialien zum Recycling von PR53 und Durchflusszellen

	Teil	Werkstoff	Recycling
1	Abdeckung	Edelstahl	Metallabfall
2	Schrauben und Unter- legscheiben	Edelstahl	Metallabfall
3	O-Ringe	FPM	Andere
4	Elektronik	Verschiedene	Elektro- und Elektron- ikaltgeräte
5	Gehäuse	Edelstahl	Metallabfall
6	Prisma	Saphir	Andere
7	Kabel	Verschiedene	Elektro- und Elektron- ikaltgeräte
8	Kabelverschraubung	Verschiedene	Metallabfall
9	Rohrverschraubungs- anschluss	Verschiedene	Metallabfall

	Teil	Werkstoff	Recycling
10	Schellen	Edelstahl	Metallabfall
11	Dichtungen	Verschiedene	Andere
12	Aderendhülse	Edelstahl	Metallabfall
13	Durchflusszellen	Edelstahl	Metallabfall

Abbildung 37 Recycelbare Materialien des PR53M

Tabelle 41	Recycelbare	Materialien	des PR53M

	Teil	Werkstoff	Recycling
14	PR53M Saphirplatte	Saphir	Andere
15	PR53M Kopfring	PVDF	PFAS
16	PR53M Durchflusszelle	PTFE	PFAS
17	PR53M Schrauben	PEEK	Andere
18	PR53M Lichthülle	PP-C	Andere

Abbildung 38 Recycelbare Materialien des PR53W

Tabelle 42	Recycelbare	Materialien	des PR53W
------------	-------------	-------------	-----------

	Teil	Werkstoff	Recycling		
19	O-Ringe	FPM	PFAS		
20	PR53W Gehäuse	Edelstahl	Metallabfall		
21	PR53 Auskleidung	PTFE	PFAS		
22	Saunders-Auskleidung	ETFE	PFAS		
23	Saunders-Gehäuse	Gusseisen mit Kugel- graphit	Metallabfall		

Abbildung 39 Recycelbare Materialien des PR53 SDI5

Tabelle 43	Recycelbare	Materialien	des	PR53	SDI5
Tubene 45	Recycendure	riuteriuneri	acs	11(35	5015

	Teil	Werkstoff	Recycling	
24	Schweißflansch	Edelstahl	Metallabfall	
25	Abstandshalter (nur für Nachrüstzwecke)	PTFE	PFAS	
26	Absperrventil und Griff	Edelstahl	Metallabfall	
27	Auskleidung	PTFE	PFAS	
28	Auskleidung	PTFE	PFAS	
29	O-Ringe	EPDM	Andere	
30	Retraktor	Edelstahl	Metallabfall	
31	Gummibalg	EPDM	Andere	
32	Support	PTFE	PFAS	
33	Handrad	PP (Polypropylen)	Andere	

12. Ersatzteilanleitungen

12.1 Ersetzen der 2,5"-EPDM-Dichtung

Befolgen Sie diese Anweisungen, um die 2,5"-EPDM-Dichtung in PR53 Refraktometern und Durchflusszellen auszutauschen.

- 2,5"-EPDM-Dichtung (Vaisala Artikel 278220SP)
- Schraubenschlüssel in verschiedenen Größen

Abbildung 40 Installieren einer 2,5"-EPDM-Dichtung im PR53AC Refraktometer

Abbildung 41 Installieren einer 2,5"-EPDM-Dichtung in Durchflusszellen

- 1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.
 - 2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

3. Öffnen Sie die Klemme(n), die das Refraktometer bzw. die Durchflusszelle an Ort und Stelle halten.

4. Tauschen Sie die Dichtung aus.

ACHTUNG! Die alte Dichtung kann schwer zu entfernen sein. Um eine Beschädigung der Dichtfläche zu vermeiden, sollten Sie zum Aus- und Einbau der Dichtungen keine scharfen Werkzeuge verwenden.

- 5. Bringen Sie das Refraktometer mit den Klemmen wieder an.
- 6. Bewahren Sie die mit dem Ersatzteil gelieferten Werkstoffzertifikate zur späteren Verwendung auf.
- 7. Recyceln Sie die ausgebauten Teile gemäß den Recyclinganweisungen unter PR53 Series User Guide (M212898EN).

12.2 Ersetzen des Rückschlagventils für das PR53GP

Befolgen Sie diese Anweisungen, um das Rückschlagventil im PR53GP Refraktometer auszutauschen.

- Rückschlagventil (Vaisala Artikel 278021SP)
- 9/16"-Schraubenschlüssel
- Gewindedichtungsband

Abbildung 42 Installieren eines Rückschlagventils am PR53GP Waschanschluss

1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.

2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

- 3. Entfernen Sie das alte Rückschlagventil.
- 4. Reinigen Sie die Gewinde mit einer Bürste, um verbleibendes Gewindedichtungsband zu beseitigen.
- 5. Umwickeln Sie die Gewinde des neuen Rückschlagventils zwei- bis dreimal mit Gewindedichtungsband.
- Installieren Sie das Rückschlagventil. Achten Sie bei der Installation auf die Flie
 ßrichtung. Ziehen Sie es mit einem 9/16"-Schraubenschl
 üssel fest.

ACHTUNG! Die Schrauben nicht überdrehen.

- 7. Stellen Sie sicher, dass nach dem Neustart des Vorgangs keine undichten Stellen vorhanden sind. Ziehen Sie die Verbindung bei Bedarf stärker fest.
- 8. Bewahren Sie die mit dem Ersatzteil gelieferten Werkstoffzertifikate zur späteren Verwendung auf.

12.3 Ersetzen des Absperrventils für das PR53SD Safe-Drive System

Befolgen Sie diese Anweisungen, um das Absperrventil für das PR53SD Safe-Drive Systems auszutauschen.

Tragen Sie bei Installations- und Wartungsarbeiten einen Augenschutz, Schutzhandschuhe, einen Schutzhelm und Sicherheitsschuhe.

WARNUNG! Halten Sie sich an die vor Ort und landesweit geltenden Gesetze und Vorschriften zum Arbeitsschutz.

WARNUNG! Wenn Sie über ein Reinigungssystem verfügen oder die Installation eines Reinigungssystems planen, müssen Sie mit den Sicherheitsbestimmungen in Bezug auf heißen Dampf und heißes Wasser vertraut machen. Weitere Einzelheiten finden Sie im entsprechenden Benutzerhandbuch zum Reinigungssystem.

WARNUNG! Prozessrefraktometer können in Prozesse mit heißen, kalten, ätzenden oder anderweitig gefährlichen Flüssigkeiten eingebaut werden. Verwenden Sie zum Einbauen des Refraktometers in den Prozess oder zum Ausbauen eine für das Prozessmedium und die Anforderungen der Installationsposition geeignete persönliche Schutzausrüstung (PSA).

- Absperrventil (Vaisala Bestellnummer 275267SP)
- 17-mm-Schraubenschlüssel
- Schraubenschlüssel, 27 mm

Abbildung 43 Ersatzteil für PR53SD Absperrventil

1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.

2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

- 3. Entfernen Sie das Refraktometer aus dem Prozess. Siehe Entfernen des PR53SD Refraktometers vom Retraktor (Seite 68).
- 4. Entfernen Sie die Schutzkappen von den Gewindeschrauben. Bewahren Sie sie zur späteren Verwendung auf.
- 5. Entfernen Sie den Retraktor und das alte Absperrventil. Lösen Sie die Gewindeschrauben mit einem 17-mm-Schraubenschlüssel.
- 6. Entfernen Sie den Ventilgriff mit einem 27-mm-Schraubenschlüssel und bewahren Sie ihn zur späteren Verwendung auf.
- 7. Installieren Sie den Griff am neuen Absperrventil. Ziehen Sie ihn mit einem 27-mm-Schraubenschlüssel auf 75 Nm an.

8. Installieren Sie das neue Absperrventil und den Retraktor. Richten Sie Absperrventil und Retraktor am Schweißanschluss aus. Stellen Sie sicher, dass das Absperrventil wie in der Abbildung gezeigt geschlossen ist. Für die Installation sind zwei Personen erforderlich. Es wird empfohlen, dass der Ventilgriff nach oben zeigt.

ACHTUNG! Wenn Sie den Montagesatz für die Nachrüstung verwenden, achten Sie darauf, dass die Flanschadapter und der Abstandshalter bei der Installation des neuen Absperrventils an ihrem Platz bleiben.

9. Ziehen Sie die Gewindeschrauben über Kreuz mit einem 17-mm-Schraubenschlüssel auf 27 Nm an. Halten Sie die Ausrüstung beim Anziehen gerade.

ACHTUNG! Die Schrauben nicht überdrehen. Es erschwert die Verwendung des Kugelhahns, wenn die Verbindungen zu fest sind.

- 10. Versehen Sie die Muttern mit Schutzkappen. Dies verhindert die fehlerhafte Verwendung beim Einziehen des Refraktometers.
- 11. Stellen Sie sicher, dass alle Verbindungen ordnungsgemäß festgezogen wurden.
- 12. Installieren Sie das Refraktometer. Siehe PR53SD Installation Guide (M212953EN).
- 13. Recyceln Sie die ausgebauten Teile gemäß den Recyclinganweisungen unter PR53 Series User Guide (M212898EN).

12.4 Ersetzen der PR53 Trocknungsmittelkapseln

Befolgen Sie diese Anweisungen, um die PR53 Trocknungsmittelkapseln auszutauschen.

- Trocknungsmittelkapseln (6 Stück) (Vaisala Bestellnummer 238440SP)
 - Torx-Schlüssel TX20
 - Torx-Schlüssel TX10

Abbildung 44 Ersetzen der PR53 Trocknungsmittelkapseln

- Machen Sie sich mit den Sicherheitsvorschriften f
 ür die Installationsposition vertraut.
 - Lösen Sie die Schrauben der Refraktometerabdeckung mit einem Torx-Schlüssel (TX20). Achten Sie darauf, die Gewindeschrauben nicht fallen zu lassen. Bewahren Sie die Gewindeschrauben zur späteren Verwendung auf.
 - 3. Lösen Sie die Schrauben am Halter der Trocknungsmittelkapseln mit einem Torx-Schlüssel (TX10).
 - 4. Entfernen Sie drei alte Trocknungsmittelkapseln.
 - 5. Installieren Sie drei neue Trocknungsmittelkapseln.
 - 6. Setzen Sie den Halter der Trocknungsmittelkapseln wieder ein. Ziehen Sie die Schrauben mit einem Torx-Schlüssel (TX10) auf 0,7 Nm an.

- 7. Bringen Sie die Refraktometerabdeckung wieder an. Ziehen Sie die Schrauben mit einem Torx-Schlüssel (TX20) auf 2 Nm an. Überdrehen Sie die Schrauben nicht. Die Schrauben können brechen.

12.5 Ersetzen des SWS100 Dampfschlauchs

Befolgen Sie diese Anweisungen, um den Dampfschlauch im Dampfreinigungssystem (SWS100) auszutauschen.

WARNUNG! Wenn Sie über ein Reinigungssystem verfügen oder die Installation eines Reinigungssystems planen, müssen Sie mit den Sicherheitsbestimmungen in Bezug auf heißen Dampf und heißes Wasser vertraut machen. Weitere Einzelheiten finden Sie im entsprechenden Benutzerhandbuch zum Reinigungssystem.

WARNUNG! Prozessrefraktometer können in Prozesse mit heißen, kalten, ätzenden oder anderweitig gefährlichen Flüssigkeiten eingebaut werden. Verwenden Sie zum Einbauen des Refraktometers in den Prozess oder zum Ausbauen eine für das Prozessmedium und die Anforderungen der Installationsposition geeignete persönliche Schutzausrüstung (PSA).

- Dampfschlauch (Vaisala Bestellnummer ASM215065SP)
- 9/16"-Schraubenschlüssel
- Gewindedichtungsband

Abbildung 45 SWS100 Dampfschlauch

- 1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.
 - 2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

- 3. Entfernen Sie den alten Dampfschlauch zwischen SWS100 und Dampfventil.
- 4. Reinigen Sie die Gewinde mit einer Bürste, um verbleibendes Gewindedichtungsband zu beseitigen.
- 5. Umwickeln Sie die Gewinde des neuen Dampfschlauchs zwei- bis dreimal mit Gewindedichtungsband.

 Installieren Sie den neuen Dampfschlauch. Ziehen Sie ihn mit einem 9/16"-Schraubenschlüssel fest.

7. Recyceln Sie die ausgebauten Teile gemäß den Recyclinganweisungen unter PR53 Prism Wash System User Guide (M212808EN).

12.6 Ersetzen des PR53SD Dampfabsperrventils

Befolgen Sie diese Anweisungen, um den Kugelhahn auszutauschen, der als Dampfabsperrventil in PR53SD Waschsystemen verwendet wird.

WARNUNG! Wenn Sie über ein Reinigungssystem verfügen oder die Installation eines Reinigungssystems planen, müssen Sie mit den Sicherheitsbestimmungen in Bezug auf heißen Dampf und heißes Wasser vertraut machen. Weitere Einzelheiten finden Sie im entsprechenden Benutzerhandbuch zum Reinigungssystem.

WARNUNG! Prozessrefraktometer können in Prozesse mit heißen, kalten, ätzenden oder anderweitig gefährlichen Flüssigkeiten eingebaut werden. Verwenden Sie zum Einbauen des Refraktometers in den Prozess oder zum Ausbauen eine für das Prozessmedium und die Anforderungen der Installationsposition geeignete persönliche Schutzausrüstung (PSA).

- Dampfabsperrventil (Vaisala Bestellnummer 277082SP)
- 9/16"-Schraubenschlüssel
- Gewindedichtungsband

Abbildung 46 Dampfabsperrventil für PR53SD Waschsystem

1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.

2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

- 3. Entfernen Sie das alte Dampfabsperrventil mit einem 9/16"-Schraubenschlüssel.
- 4. Reinigen Sie die Gewinde mit einer Bürste, um verbleibendes Gewindedichtungsband zu beseitigen.
- 5. Umwickeln Sie die Gewinde des neuen Ventils zwei- bis dreimal mit Gewindedichtungsband.
- 6. Installieren Sie das neue Ventil. Ziehen Sie ihn mit einem 9/16"-Schraubenschlüssel fest.

ACHTUNG! Die Schrauben nicht überdrehen.

- 7. Stellen Sie sicher, dass alle Verbindungen ordnungsgemäß festgezogen wurden.
- Recyceln Sie die ausgebauten Teile gemäß den Recyclinganweisungen unter PR53 Prism Wash System User Guide (M212808EN).

12.7 Ersetzen des SWS100 Siebs

Befolgen Sie diese Anweisungen, um das Sieb des SWS100 Dampfwaschsystems auszutauschen.

- Sieb (Vaisala Bestellnummer 276373SP)
- 1,25"-Schraubenschlüssel
- Gewindedichtungsband
- Bürste

Abbildung 47 Ersatzteil für SWS100 Sieb

1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.

2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

- 3. Entfernen Sie das alte Sieb. Lösen Sie es mit einem 1,25"-Schraubenschlüssel.
- 4. Reinigen Sie die Gewinde mit einer Bürste, um verbleibendes Gewindedichtungsband zu beseitigen.
- 5. Umwickeln Sie die Gewinde des neuen Siebs zwei- bis dreimal mit Gewindedichtungsband.

6. Installieren Sie das neue Sieb. Ziehen Sie es mit einem 1,25"-Schraubenschlüssel fest.

ACHTUNG! Die Schrauben nicht überdrehen.

7. Recyceln Sie die ausgebauten Teile gemäß den Recyclinganweisungen unter PR53 Prism Wash System User Guide (M212808EN).

12.8 Ersetzen der PR53SD Dampfwaschdüse

Befolgen Sie diese Anweisungen, um die PR53SD Dampfwaschdüsen-Baugruppe auszutauschen.

WARNUNG! Prozessrefraktometer können in Prozesse mit heißen, kalten, ätzenden oder anderweitig gefährlichen Flüssigkeiten eingebaut werden. Verwenden Sie zum Einbauen des Refraktometers in den Prozess oder zum Ausbauen eine für das Prozessmedium und die Anforderungen der Installationsposition geeignete persönliche Schutzausrüstung (PSA).

WARNUNG! Wenn Sie über ein Reinigungssystem verfügen oder die Installation eines Reinigungssystems planen, müssen Sie mit den Sicherheitsbestimmungen in Bezug auf heißen Dampf und heißes Wasser vertraut machen. Weitere Einzelheiten finden Sie im entsprechenden Benutzerhandbuch zum Reinigungssystem.

WARNUNG! Die Oberflächen sind heiß. Verwenden Sie geeignete persönliche Schutzausrüstung (PSA).

- PR53SD Dampfwaschdüse (Vaisala Bestellnummer DRW258211SP)
- Schraubenschlüssel, 46 mm
- 9/16"-Schraubenschlüssel

Abbildung 48 PR53SD Dampfwaschdüsen-Baugruppe

Abbildung 49 Teile für PR53SD Dampfwaschdüse

- 1 Dampfwaschdüsen-Armatur
- 2 Dampfabsperrventil
- 3 Sicherheitsstift
- 4 Waschdüsenmutter
- 5 Absperrventil Waschsystem

1. Machen Sie sich mit den Sicherheitsvorschriften für die Installationsposition vertraut.

2. Stellen Sie sicher, dass die Prozessleitung drucklos und entleert ist.

- 3. Schließen Sie das Dampfabsperrventil (2).
- 4. Trennen Sie den Dampfschlauch mit einem 9/16"-Schraubenschlüssel.
- 5. Entfernen Sie den Sicherheitsstift (3).
- 6. Lösen Sie die Mutter (4) der Waschdüse mit einem 46-mm-Schraubenschlüssel um zwei Umdrehungen. Lösen Sie die Mutter nicht vollständig.
- 7. Ziehen Sie die Dampfwaschdüse bis zum Anschlag heraus.

- 8. Schließen Sie das Absperrventil (5) des Waschsystems.
- Lösen Sie die Mutter (4) der Waschdüse mit einem 46-mm-Schraubenschlüssel vollständig.
- 10. Ziehen Sie die Dampfwaschdüse heraus.
- 11. Schieben Sie die neue Dampfwaschdüse in das Absperrventil (5) des Waschsystems.
- 12. Ziehen Sie die Mutter (4) der Waschdüse mit einem 46-mm-Schraubenschlüssel einige Umdrehungen fest. Ziehen Sie die Mutter nicht vollständig fest.
- 13. Öffnen Sie das Absperrventil (5) des Waschsystems.
- 14. Schieben Sie die Dampfwaschdüse vollständig in den Prozess.
- 15. Bringen Sie den Sicherheitsstift (3) wieder an.
- Ziehen Sie die Mutter (4) der Waschdüse mit einem 46-mm-Schraubenschlüssel auf ca. 40–45 Nm an.
- 17. Reinigen Sie die Gewinde mit einer Bürste, um verbleibendes Gewindedichtungsband zu beseitigen.
- 18. Umwickeln Sie die Gewinde der neuen Dampfwaschdüsen-Armatur (1) zwei- bis dreimal mit Gewindedichtungsband.
- Schließen Sie den Dampfschlauch an. Ziehen Sie ihn mit einem 9/16"-Schraubenschlüssel fest.
- 20. Öffnen Sie das Dampfabsperrventil (2).
- 21. Recyceln Sie die ausgebauten Teile gemäß den Recyclinganweisungen unter PR53 Prism Wash System User Guide (M212808EN).

13. Modbus-Register

13.1 Modbus-Register

Tabelle 44 Messdatenregister (schreibgeschützt)

Registernummer (Dezimal)	Adresse (hexade- zimal)	Adresse (hexade- Registerbeschrei- Datenformat zimal) bung		
3	0x0002	0x0002 Konzentration		*
	0x0003		ma	
5	0x0004 Te		32-Bit-Gleitkom-	°C
	0x0005		ma	
7	0x0006	Rohkonzentration	32-Bit-Gleitkom-	*
	0x0007		ma	
9	0x0008	Brechungsindex	32-Bit-Gleitkom-	
	0x0009		ma	
11	0x000A	Qualitätsfaktor	16-Bit-Integer	

* Abhängig von der aktiven Konzentrationskurve

Tabelle 45 Messdiagnoseregister (schreibgeschützt)

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Einheit/Gültiger Bereich/ Beschreibbar
529	0x0210	Heller Bereich	32-Bit-Gleitkom-	%
	0x0211		ma	
531	0x0212	Umgebungslicht	32-Bit-Integer	
	0x0213			
533	0x0214	Interne Tempera-	32-Bit-Gleitkom-	°C
	0x0215	tur	ma	
535	0x0216	Interne relative	32-Bit-Gleitkom-	% rF
	0x0217	Feuchte	ma	
537	0x0218	Lichtexposition	32-Bit-Gleitkom-	%
	0x0219		ma	

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Einheit/Gültiger Bereich/ Beschreibbar
539	0x021A	Ausgangspegel	32-Bit-Gleitkom-	mA
	0x021B	Analogausgang I	ma	
541	0x021C	Justierte Kon-	32-Bit-Gleitkom-	*
	0x021D	zentration	ma	
543	0x021E	Justierte Tempe-	32-Bit-Gleitkom-	°C
	0x021F	ratur	ma	
545	0x0220	Rohwert Tempe-	32-Bit-Gleitkom-	°C
	0x0221	ratur	ma	
547	0x0222	Messungsnummer	32-Bit-Integer	
	0x0223			
553	0x0228	Temperatur stabil	16-Bit-Integer	0 = nicht stabil 1 = stabil

* Abhängig von der aktiven Konzentrationskurve

Tabelle 46 Statusregister (schreibgeschützt)

Registernummer (De- zimal)	Adresse (hexadezimal)	Registerbeschreibung	Datenformat
515	0x0202	Fehlercode	32-Bit-Integer
	0x0203		
517	0x0204	Fehlersubcode	32-Bit-Integer
	0x0205		

Der Fehlersubcode ist zusammen mit dem Fehlercode an den Vaisala Service zu senden.

Tabelle 47 Fehlercodecodierung

M S B	3 0	2 9	2 8	2 7	2 6	2 5	2 4	 17	16	15	14	13	12	11	10	 6	5	4	3	2	1	L S B
Sys	stem	1						Um	ngeb	oung		Bei	rech	nun	g	Ter tur	npe	ra-	Bilo	b		

Wert Fehlercoderegister	Entsprechender Fehler							
Abbilderkennungsstatus								
1	Abbildqualität niedrig.							
2	Außenlichtstärke hoch.							
3	Prismabelag erkannt.							
4	Keine Flüssigkeit erkannt.							
5	Kein optisches Abbild							
6	Außenlichtstärke zu hoch.							
Status Temperaturmessung								
1	Temperaturmessabweichung.							

Die Messstatus werden in der Reihenfolge ihrer Priorität aufgelistet. Höhere Werte entsprechen höherer Priorität.

Wert Fehlercoderegister	Entsprechender Fehler
Rechenfehler	
0x01	Konzentration außerhalb des Konzentrationskurvenbereichs.
0x02	Temperatur außerhalb des Konzentrationskur- venbereichs.
0x04	Ungültige Berechnungsparameter.
0x08	Kalibriermodus aktiv.
Umgebungsfehler	
0x01	Interne Temperatur ist zu hoch.
0x02	Interne Feuchte zu hoch.
Systemfehler	
0x01	Leeres Abbild schadhaft.

Sind mehrere Fehler gleichzeitig aktiv, enthält das Modbus-Fehlercoderegister die Summe der aktuell aktiven Fehlercodes.

Tabelle 48 Geräteinformationsregister (schreibgeschützt)

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Beispielausgabe	
7425	0x1D00-0x1D07	VendorName	Text	"Vaisala Oyj"	

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Beispielausgabe
7433	0x1D08-	ProductCode	Text	"PR53"
	0x1D0F			
7441	0x1D10-0x1D17	SerialNumber	Text	"J1140501"
7449	0x1D18-	Firmwareversion	Text	"1.0.0"
	0x1D1F			

Tabelle 49 Konfigurationsregister

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Einheit/Gültiger Bereich
Dämpfung				
771	0x0302	Dämpfungsart	16-Bit-Integer	0 = Exponentiell
				1 = Linear
				2 = Anstiegsrate
772	0x0303	Dämpfungszeit	16-Bit-Integer	S
773	0x0304	Anstiegsrate	32-Bit-Gleitkom-	*
	0x0305		ma	
775	0x0306	Toleranzzeit	16-Bit-Integer	s
Management der K	onzentrationskurve			
776	0x0307	Anzahl der Kon- zentrationskurven	16-Bit-Integer	Schreibgeschützt
778	0x0309	Kurve wählen	16-Bit-Integer	0 = Konzentrati- onskurve 1
				1 = Konzentrati- onskurve 2
				2 = Konzentrati- onskurve 3
				3 = Konzentrati- onskurve 4
Kommunikation				
1537	0x0600	Adresse	16-Bit-Integer	1-247

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Einheit/Gültiger Bereich
1538	0x0601	Bitrate (bit/s)	16-Bit-Integer	0 = 300
				1 = 600
				2 = 1200
				3 = 2400
				4 = 4800
				5 = 9600
				6 = 19200
				7 = 28800
				8 = 38400
				9 = 57600
				10 = 76800
				11 = 115200
1539	0x0602	Parität, Datenbits, Stoppbits	16-Bit-Integer	0 = Keine, 8, 1
				1 = Keine, 8, 2
				2 = Gerade, 8, 1
				3 = Gerade, 8, 2
				4 = Ungerade, 8, 1
				5 = Ungerade, 8, 2
1540	0x0603	Ansprechverzö- gerung	16-Bit-Integer	0–1000 ms
1541	0x0604	Gerät neu starten	16-Bit-Integer	Beim Schreiben in das Register:
				1 = Gerät neu star- ten
Analogausgang 1				
1794	0x0701	Unteres Skalenen-	32-Bit-Gleitkom-	*
	0x0702	de	ma	
1796	0x0703	Oberes Skalenen-	32-Bit-Gleitkom-	*
	0x0704	de	ma	
1798	0x0705	Fehlerausgang-	32-Bit-Gleitkom-	0,0-20,5 mA
	0x0706	spegei		
1800	0x0707	Fehlerausgabe für	16-Bit-Integer	0 = Deaktiviert
		Keine Probe		1 = Aktiviert

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Einheit/Gültiger Bereich
1801	0x0708	Fehlerausgang-	32-Bit-Gleitkom-	0,0-20,5 mA
	0x0709	spegel fur Keine Probe	ma	
Temperatur-Offset				
8967	0x2306	T-Offset	32-Bit-Gleitkom- ma	°C

* Abhängig von der aktiven Konzentrationskurve

Tabelle 50 Konzentrationskurven-Konfigurationsregister

Registernum- mer (Dezimal)	Adresse (he- xadezimal)	Registerbe- schreibung	Datenformat	Einheit	Beschreibbar
0 + Basis	0x0000- 0x0004 + Ba- sis	ID	Text		No (Nein)
5 + Basis	0x0005 + Ba- sis	Lösemittelsor- te	16-Bit-Integer	0 = Andere 1 = Wasserba- siert	No (Nein)
6 + Basis	0x0006 + Ba- sis	Minimale Kon- zentration	32-Bit-Gleit- komma	*	No (Nein)
	0x0007 + Ba- sis				
8 + Basis	0x0008 + Ba- sis	Maximale Kon- zentration	32-Bit-Gleit- komma	*	No (Nein)
	0x0009 + Ba- sis				
10 + Basis	0x000A + Ba- sis	Minimale Tem- peratur	32-Bit-Gleit- komma	°C	No (Nein)
	0x000B + Ba- sis				
12 + Basis	0x000C + Ba- sis	Maximale Temperatur	32-Bit-Gleit- komma	°C	No (Nein)
	0x000D + Ba- sis				
14 + Basis	0x000E- 0x002D + Ba- sis	Beschreibung	Text		No (Nein)

Registernum- mer (Dezimal)	Adresse (he- xadezimal)	Registerbe- schreibung	Datenformat	Einheit	Beschreibbar
95 + Basis	0x005F + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0060 + Ba- sis	00			
97 + Basis	0x0061 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0062 + Ba- sis				
99 + Basis	0x0063 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0064 + Ba- sis	02			
101 + Basis	0x0065 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0066 + Ba- sis	03			
103 + Basis	0x0067 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0068 + Ba- sis	C10			
105 + Basis	0x0069 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x006A + Ba- sis	CII			
107 + Basis	OxOO6B + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x006C + Ba- sis	CI2			
109 + Basis	0x006D + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x006E + Ba- sis	1 C13			
111 + Basis	0x006F + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0070 + Ba- sis	C20			

Registernum- mer (Dezimal)	Adresse (he- xadezimal)	Registerbe- schreibung	Datenformat	Einheit	Beschreibbar
113 + Basis	0x0071 + Basis	Chemische	32-Bit-Gleit-		Ja
	0x0072 + Ba- sis	C21	котта		
115 + Basis	0x0073 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0074 + Ba- sis	C22			
117 + Basis	0x0075 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0076 + Ba- sis	1 C23			
119 + Basis	0x0077 + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x0078 + Ba- sis	030			
121 + Basis	0x0079 + Ba- sis	Chemische 3 Koeffizienten, 4 C31	32-Bit-Gleit- komma		Ja
	0x007A + Ba- sis				
123 + Basis	0x007B + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x007C + Ba- sis	1 C32			
125 + Basis	0x007D + Ba- sis	Chemische Koeffizienten,	32-Bit-Gleit- komma		Ja
	0x007E + Ba- sis	1 C33			
127 + Basis	0x007F	Name	Text		Ja
	0x009E + Ba- sis				
159 + Basis	0x009F + Ba- sis	Feldoffset	32-Bit-Gleit- komma	*	Ja
	0x00A0 + Ba- sis				

Registernum- mer (Dezimal)	Adresse (he- xadezimal)	Registerbe- schreibung	Datenformat	Einheit	Beschreibbar
131 + Basis	0x00A1 + Ba- sis	Feldverstär- kung	32-Bit-Gleit- komma		Ja
	0x00A2 + Ba- sis				
Konzentrations	kurvenbasen				
3073	0x0C00	Konzentrationskurve 1			
3329	0x0D00	Konzentrationskurve 2			
3585	0x0E00	Konzentrationskurve 3			
3841	0x0F00	Konzentrations	kurve 4		

* Abhängig von der aktiven Konzentrationskurve

Tabelle 51 Prüfwertregister

Registernummer (Dezimal)	Adresse (hexade- zimal)	Registerbeschrei- bung	Datenformat	Prüfwert
7937	0x1F00	Prüfung vorzei- chenbehafteter Integer	16-Bit-Integer	-12345
7938	0x1F01	Gleitkommaprü-	32-Bit-Gleitkom-	-123.45
	0x1F02	fung	ma	
7940	0x1F03	Stringprüfung	Text	String "-123.45"
	0x1F04			
	0x1F05			
	0x1F06			

Tabelle 52 Geräteidentifizierungsobjekte

Objektkennung	Objekt-ID (hexadezi- mal)	Objektname	Inhaltsbeispiele
0	0x00	VendorName	"Vaisala"
1	0x01	ProductCode	"PR53"
2	0x02	MajorMinorVersion	"1.0.0"
3	0x03	VendorUrl	"https://www.vaisa- la.com"

Objektkennung	Objekt-ID (hexadezi- mal)	Objektname	Inhaltsbeispiele
4	0x04	ProductName	"Polaris™ Prozessref- raktometer"
5	0x05	ModelName	"PR53AC"
128	0x80	Seriennummer ¹⁾	"J1140501"
129	0x81	CalibrationDate ¹⁾	"2023-04-21" Kalibrierdatum im For- mat JJJJ-MM-TT. Leere Zeichenfolge, wenn nicht festgelegt/gültig.
130	0x82	CalibrationText ¹⁾	"Vaisala/HEL" Kalibrierinformations- text. Leere Zeichenfol- ge, wenn nicht festge- legt/gültig.

1) Vaisala spezifisches Geräteinformationsobjekt

Weitere Informationen

- Modbus RTU (Seite 26)
- Konfigurieren der Modbus-Kommunikationseinstellungen mit Insight (Seite 64)

Anhang A. Messverfahren

Das Vaisala K-PATENTS® Inline-Refraktometer bestimmt den Brechungsindex (BI) der Prozesslösung. Es misst den kritischen Brechungswinkel unter Verwendung einer gelben LED-Lichtquelle mit der Wellenlänge (589 nm) der Natrium-D-Linie. Das Licht der Lichtquelle (L) in der folgenden Abbildung wird auf die Grenzfläche zwischen Prisma (P) und Prozessmedium (S) gerichtet. Zwei der Prismenoberflächen (M) agieren als Spiegel, die die Lichtstrahlen so biegen, dass sie aus unter verschiedenen Winkeln auf die Grenzfläche treffen.

Abbildung 50 Refraktometerprinzip

Die reflektierten Lichtstrahlen formen ein Bild (ACB), in dem (C) der Position des kritischen Strahlwinkels entspricht. Die Strahlen an (A) werden an der Prozessgrenzfläche vollständig intern reflektiert, die Strahlen an (B) werden teilweise reflektiert und teilweise in die Prozesslösung gebrochen. So wird das optische Abbild in einen hellen (A) und einen dunklen Bereich (B) geteilt. Die Position der Grenzlinie (C) gibt den Wert des kritischen Winkels an. Der Brechungsindex kann dann aus dieser Position bestimmt werden.
Der Brechungsindex ändert sich mit Konzentration und Temperatur der Prozesslösung. Bei den meisten Lösungen steigt der Brechungsindex mit zunehmender Konzentration. Bei höheren Temperaturen ist der Brechungsindex kleiner als bei niedrigeren Temperaturen. Daraus folgt, dass sich das optische Abbild mit der Konzentration der Prozesslösung ändert (siehe folgende Abbildung). Die Farbe der Lösung, Gasblasen und nicht gelöste Partikel wirken sich nicht auf die Position der Grenzlinie (C) aus.

Abbildung 51 Optische Abbilder

Die Position der Grenzlinie wird digital mit einem CCD-Element gemessen und von einem Prozessor im Instrument in einen Brechungsindexwert umgewandelt. Dieser Wert wird zusammen mit der gemessenen Prozesstemperatur zum Berechnen der Konzentration herangezogen.

Abbildung 52 Interpretation des optischen Abbilds

Anhang B. Analysieren des optischen Abbilds

Das optische Abbild liefert Informationen zu Problemen, beispielsweise zum Zustand des Prismas.

Die Y-Achse gibt die Lichtintensität, die X-Achse die Position der Grenzlinie an. Die Bl-Kalibrierung folgt der X-Achse. Die Position der Bl-Messung auf der X-Achse befindet sich am steilsten Kurvenabfall, bildet also den höchsten Winkel an der Ecke.

Tabelle 54 Prismaskalierung

 Gut Messstatus Normal operation (Normalbetrieb). Beobachten Sie den Winkel. Der Abfall von hoher Lichtintensität zu niedriger Lichtintensi- tät muss möglichst steil sein.
 Schadhaft Messstatus Normal operation (Normalbetrieb). Skalierung hat begonnen Messung weicht nach oben ab Manuelle Reinigung durchführen
 Starke Skalierung Messstatus No liquid detected. (Keine Flüssigkeit erkannt) oder Prism coating detected. (Geschichtete Ablagerungen auf dem Prisma erkannt). Messung 0 % Sofortige manuelle Reinigung erforderlich. Siehe PR53 Prism Wash System User Guide (M212808EN).

Wartungs- und Kalibrierservices

Vaisala bietet umfassenden Kundenservice über die gesamte Lebensdauer unserer Messinstrumente und -systeme an. Unsere Serviceleistungen stehen weltweit mit schnellen Lieferzeiten zur Verfügung. Weitere Informationen finden Sie unter www.vaisala.com/calibration.

- Der Vaisala Online Store unter store.vaisala.com kann in den meisten Ländern genutzt werden. Sie können das Angebot über das Produktmodell durchsuchen und benötigte Zubehörkomponenten und Ersatzteile sowie Wartungs- und Kalibrierservices bestellen.
- Die Kontaktdaten des regionalen Wartungs- und Kalibrierteams finden Sie unter www.vaisala.com/contactus.

Gewährleistung

Unsere Standardgewährleistungsbedingungen finden Sie unter www.vaisala.com/warranty. Die Gewährleistung deckt keine Verschleißschäden, Schäden infolge außergewöhnlicher Betriebsbedingungen, Schäden infolge unzulässiger Verwendung oder Montage oder Schäden infolge nicht genehmigter Modifikationen ab. Einzelheiten zum Gewährleistungsumfang für bestimmte Produkte enthalten der zugehörige Liefervertrag und die Verkaufsbedingungen.

Technischer Support

Wenden Sie sich unter helpdesk@vaisala.com an den technischen Support von Vaisala. Geben Sie mindestens folgende Informationen an (sofern relevant): • Produktname. Modell und Seriennummer

- Software-/Firmwareversion
- Name und Standort der Installation

• Name und Kontaktinformationen eines Technikers für weitere Auskünfte Weitere Informationen finden Sie unter www.vaisala.com/support.

VAISALA

Bühler Technologies GmbH

Harkortstraße 29 D-40880 Ratingen Tel.: +49 (0)2102-4989-0 Fax: +49 (0)2102-4989-20 analyse@buehler-technologies.com www.buehler-technologies.com

www.vaisala.com